Advanced Electronic Architecture Design for Next Electric Vehicle Generation

  • Ovidiu Vermesan
  • Mariano Sans
  • Peter Hank
  • Glenn Farrall
  • Jamie Packer
  • Nicola Cesario
  • Harald Gall
  • Lars-Cyril Blystad
  • Michele Sciolla
  • Ahmed Harrar
Conference paper
Part of the Lecture Notes in Mobility book series (LNMOB)


Future generations of electric vehicles (EVs) require a scalable, layered architecture addressing different system aspects such as scalable modules, uniform communication, and hardware (HW) and software (SW) architectures. This will reduce the number of electronic control units as well as the variety of communication, sensor data fusion and charging infrastructure interfaces. The architecture is based on distributed processing with novel propulsion systems and electronic control units implemented as embedded systems containing HW and SW algorithms. Sensing, actuation, signal processing and computing devices are embedded in the electronic equipment, motors, batteries and the mechanical components. This paper presents the current advances in novel EV architectures based on embedded computing devices, communication systems and management algorithms.


Electric vehicle Electronic/electric architecture Networking architecture Partial CAN FlexRay Ethernet Multi core microcontroller ADAS X-by-Wire control Parking assistance 



The work was supported by the ARTEMIS JU POLLUX project under the project grant. The authors would also like to convey thanks to the Public Authorities and European Commission for providing the financial support. The authors wish to acknowledge the fruitful discussions with the members of ENIAC JU E3Car and Internet of Energy for Electric Mobility (IoE) projects.


  1. 1.
    Chan CC, Bouscayrol A, Chen K (2010) Electric, hybrid and fuel- cell vehicles: architectures and modeling. IEEE Trans Veh Tech 59(2):589–598Google Scholar
  2. 2.
    ISO/DIS 26262-1 (2009) Road vehiclesFunctional safety, July 2009Google Scholar
  3. 3.
    Infineon Technologies AF (2012) TriCoreTM V1.6 User Manual, 2012Google Scholar
  4. 4.
    ISO 15118 Road vehiclesvehicle to grid communication interfaceGoogle Scholar
  5. 5.
    Eckert C (2010) IP-basierte Kommunikationen im/zum Fahrzeug, SafeTRANS Workshop Presentation, p 6Google Scholar
  6. 6.
  7. 7.
    Plankensteiner M (2011) Ethernet learns to drive Hanser automotive. TTTech Viena 12:14Google Scholar
  8. 8.
    Hank P, Müller S, Vermesan O, Van Den Keybus J (2013) Automotive ethernet: in-vehicle networking and smart mobility. In: Proceedings design, automation and test in europe conference and exhibition (DATE), pp 17351739. ISBN:978-1-4673-5071-6Google Scholar
  9. 9.
    BroadR-Reach Specification OPEN Alliance.
  10. 10.
    Vermesan O, Blystad L-C, John R, Hank P, Bahr R, Moscatelli A (2013) Smart, connected and mobile: architecting future electric mobility ecosystems. In: Design, automation & test in Europe conference & exhibition (DATE), pp 1740–1744. ISBN:978-1-4673-5071-6Google Scholar
  11. 11.
    Miller JM, Startorelli G (2010) Battery and ultracapacitor combinations-where should the converter go? In: IEEE vehicle power and propulsion conference (VPPC), pp 1–7Google Scholar
  12. 12.
  13. 13.
  14. 14.
    Active Park Assist FORD,
  15. 15.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ovidiu Vermesan
    • 1
  • Mariano Sans
    • 2
  • Peter Hank
    • 3
  • Glenn Farrall
    • 4
  • Jamie Packer
    • 4
  • Nicola Cesario
    • 5
  • Harald Gall
    • 6
  • Lars-Cyril Blystad
    • 1
  • Michele Sciolla
    • 7
  • Ahmed Harrar
    • 8
  1. 1.SINTEFOsloNorway
  2. 2.ContinentalToulouseFrance
  3. 3.NXP SemiconductorsHamburgGermany
  4. 4.Infineon TechnologiesBristolUK
  5. 5.ST MicroelectronicsCataniaItaly
  6. 6.AmsUnterpremstättenAustria
  7. 7.Centro Ricerche FiatOrbassanoItaly
  8. 8.PSA Peugeot CitroënParisFrance

Personalised recommendations