Extension of the Method of Musical Composition for the Treatment of Multi-objective Optimization Problems

  • José Roberto Méndez Rosiles
  • Antonin Ponsich
  • Eric Alfredo Rincón García
  • Roman Anselmo Mora Gutiérrez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8857)

Abstract

This work proposes a new technique for the treatment of Multi-objective Optimization Problems (MOPs), based on the extension of a socio-cultural algorithm, the Method of Musical Composition (MMC). The MMC uses a society of agents, called composers, who have their own creative ability, maintain a memory of their previous artwork and are also able to exchange information.

According to this analogy, a decomposition approach implemented through a Tchebycheff function is adapted, assigning each composer to the solution of a particular scalar sub-problem. Agents with similar parameterization of the original MOP may share their solutions. Furthermore, the generation of new tunes was modified, using the Differential Evolution mutation operator. Computational experiments performed on the ZDT and DTLZ test suite highlight the promising performances obtained by the resulting MO-MMC algorithm, when compared with the NSGA-II, MOEA/D and two swarm intelligence based techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95–100 (2002)Google Scholar
  2. 2.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  3. 3.
    Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11, 712–731 (2007)CrossRefGoogle Scholar
  4. 4.
    Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Coello Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation 8, 256–279 (2004)CrossRefGoogle Scholar
  6. 6.
    Mora Gutiérrez, R., Ramírez-Rodríguez, J., García, E.R.: An optimization algorithm inspired by musical composition. Artificial Intelligence Review (2012)Google Scholar
  7. 7.
    Coello Coello, C.A., Lamont, G., Veldhuizen, D.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007) ISBN 978-0-387-33254-3Google Scholar
  8. 8.
    Zapotecas Martínez, S., Coello Coello, C.A.: A multi-objective particle swarm optimizer based on decomposition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO 2011), pp. 69–76. ACM (2011)Google Scholar
  9. 9.
    Al Moubayed, N., Petrovski, A., McCall, J.: D2MOPSO: Multi-objective particle swarm optimizer based on decomposition and dominance. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp. 75–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Niu, B.: A multi-objective particle swarm optimization based on decomposition. In: Huang, D.-S., Gupta, P., Wang, L., Gromiha, M. (eds.) ICIC 2013. CCIS, vol. 375, pp. 200–205. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Zhao, Y., Liu, H.L.: Multi-objective particle swarm optimization algorithm based on population decomposition. In: Yin, H., et al. (eds.) IDEAL 2013. LNCS, vol. 8206, pp. 463–470. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Cheng, J., Zhang, G., Li, Z., Li, Y.: Multi-objective ant colony optimization based on decomposition for bi-objective traveling salesman problems. Soft Computing 16, 597–614 (2012)CrossRefMATHGoogle Scholar
  13. 13.
    Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: A multiobjective evolutionary algorithm using decomposition and ant colony. IEEE Transactions on Cybernetics 43, 1845–1859 (2013)CrossRefGoogle Scholar
  14. 14.
    Coello Coello, C.A., Becerra, R.L.: Evolutionary multiobjective optimization using a cultural algorithm. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Indianapolis, USA, pp. 6–13. IEEE service center (2003)Google Scholar
  15. 15.
    Best, C., Che, X., Reynolds, R.G., Liu, D.: Multi objective cultural algorithm. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, pp. 1–9. IEEE service center (2010)Google Scholar
  16. 16.
    Reynolds, R.G., Liu, D.: Multi-objective cultural algorithm. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orleans, USA, pp. 1233–1241. IEEE service center (2011)Google Scholar
  17. 17.
    Mora Gutiérrez, R., Ramírez-Rodríguez, J., García, E.R., Ponsich, A., Herrera, O.: Adaptation of the musical composition method for solving constrained optimization problems. Soft Computing (in press, 2014)Google Scholar
  18. 18.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)CrossRefGoogle Scholar
  19. 19.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 15–145. Springer, USA (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • José Roberto Méndez Rosiles
    • 1
  • Antonin Ponsich
    • 1
  • Eric Alfredo Rincón García
    • 1
  • Roman Anselmo Mora Gutiérrez
    • 1
  1. 1.Dpto. de SistemasUniversidad Autónoma Metropolitana - AzcapotzalcoMéxico DFMéxico

Personalised recommendations