Yager–Rybalov Triple Π Operator as a Means of Reducing the Number of Generated Clusters in Unsupervised Anuran Vocalization Recognition

  • Carol Bedoya
  • Julio Waissman Villanova
  • Claudia Victoria Isaza Narvaez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8857)


The Learning Algorithm for Multivariate Data Analysis (LAMDA) is an unsupervised fuzzy-based classification methodology. The operating principle of LAMDA is based on finding the datum-cluster relationship obtained by means of the Global Adequacy Degrees (GADs) of the Marginal Adequacy Degrees (MADs) of all the data attributes. In comparison with other unsupervised clustering algorithms, LAMDA does not require the number of classes as input parameter; however, in some applications, the quantity of obtained clusters does not correspond with the number of desired classes. Typically, this issue is overcome by merging interrelated clusters within the same class; nevertheless, in some applications the number of generated clusters related to the same class reaches a non-desired and impractical number. In LAMDA, the number of generated clusters is controlled by using a linear mixed connective with an exigency index α. This connective is an unnatural aggregation operator of the MADs, which adds an additional parameter to set up. In this paper, a full reinforcement operator (Yager–Rybalov Triple Π) is used as aggregation operator for merging the information contained in the MADs. This approach significantly reduces the number of generated classes and suppresses the LAMDA dependence of the parameter α. The proposed approach was tested in a case study related to unsupervised anuran vocalization recognition. A database of advertisement calls of six anuran (frog) species for testing this proposal was selected. All 102 vocalizations were correctly identified (100% of accuracy) and solely the desired classes were generated by the algorithm (establishing a cluster-class bijection).


Fuzzy clustering Fuzzy connective Bioacoustics Anuran Aggregation operator Bipolar scale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguilar-Martin, J., López de Mantarás, R.: The process of classification and learning the meaning of linguistic descriptors or concepts. Approximate Reasoning in Decision Analysis, 165–175 (1982)Google Scholar
  2. 2.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, New York (2001); J. Classif. 24(2) (September 2007)Google Scholar
  3. 3.
    Tzanakou, E.M.: Supervised and Unsupervised Pattern Recognition: Feature Extraction and Computational Intelligence. CRC Press, New York (2000)Google Scholar
  4. 4.
    Chang-Hsing, L., Chih-Hsun, C., Chin-Chuan, H., Ren-Zhuang, H.: Automatic recognition of animal vocalizations using averaged MFCC and linear discriminant analysis. Pattern Recognition Letters 27, 93–101 (2006)CrossRefGoogle Scholar
  5. 5.
    Proceedings of the 4th International Workshop on Detection, Classification and Localization of Marine Mammals Using Passive Acoustics and 1st International Workshop on Density Estimation of Marine Mammals Using Passive Acoustics. Applied Acoustics 71(11), 991–1112 (November 2010)Google Scholar
  6. 6.
    Sánchez, M., Prats, F., Agell, N., Aguilar-Martin, J.: A Characterization of Linearly Compensated Hybrid Connectives Used in Fuzzy Classifications. In: ECAI, pp. 1081–1082. IOS Press (2004)Google Scholar
  7. 7.
    Yager, R.R., Rybalov, A.: Full reinforcement operators in aggregation techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 28(6), 757–769 (1998)CrossRefGoogle Scholar
  8. 8.
    McCallum, M.L.: Amphibian Decline or Extinction? Current Declines Dwarf Background Extinction Rate. Journal of Herpetology 41, 483–491 (2007)CrossRefGoogle Scholar
  9. 9.
    Bedoya, C., Uribe, C., Isaza, C.: Unsupervised Feature Selection Based on Fuzzy Clustering for Fault Detection of the Tennessee Eastman Process. In: Proceedings of the 13th Ibero-American Conference on Artificial Intelligence (IBERAMIA), Cartagena de Indias, Colombia, pp. 350–360 (2012)Google Scholar
  10. 10.
    Botía, J.F., Isaza, C., Kempowsky, T., Le Lann, M.V., Aguilar-Martín, J.: Automaton based on fuzzy clustering methods for monitoring industrial processes. Engineering Applications of Artificial Intelligence 26(4), 1211–1220 (2013)CrossRefGoogle Scholar
  11. 11.
    Piera-Carrete, N., Desroches, P., Aguilar-Martin, J.: Variation Points in Pattern Recognition. Pattern Recognition Letters 11, 519–524 (1990)CrossRefGoogle Scholar
  12. 12.
    Bedoya, C., Isaza, C., Daza, J.M., López, J.D.: Automatic Recognition of Anuran Species Based on Syllable Identification. Ecological Informatics 24, 200–209 (2014)CrossRefGoogle Scholar
  13. 13.
    Isaza, C.: Diagnostic par Techniques d‘apprentissage Floues: Conception d‘une Methode de Validation et d‘optimisation des Partitions. PhD thesis, Laboratoire d’Analyse et d’Architecture des Syst‘emes du CNRS (October 2007)Google Scholar
  14. 14.
    Emilion, R., Regis, S., Doncescu, A.: A General Version of the Triple Pi Operator. International Journal of Iintelligent Systems, 1–18 (2013)Google Scholar
  15. 15.
    Ibañez, R., Stanley, A., Ryan, M., Jaramillo, C.: Vocalizaciones de ranas y sapos del Monumento Natural Barro Colorado. Parque Nacional Soberanía y áreas adyacentes. Sony MusicEntertaiment (Central America) S.A. (1999)Google Scholar
  16. 16.
    Selesnick, I.W., Burrus, C.S.: Generalized Digital Butterworth Filter Design. In: Proceedings of the IEEE Int. Conf. Acoust., Speech, Signal Processing, vol. 3 (May 1996)Google Scholar
  17. 17.
    Zhao, X., O’Shaughnessy, D.: A new hybrid approach for automatic speech signal segmentation using silence signal detection, energy convex hull, and spectral variation. In: Canadian Conference on Electrical and Computer Engineering, CCECE 2008, pp. 4–7 (May 2008)Google Scholar
  18. 18.
    Mermelstein, P.: Distance measures for speech recognition, psychological and instrumental. Pattern Recognition and Artificial Intelligence, 374–388 (1976)Google Scholar
  19. 19.
    Fox, E.: A new perspective on acoustic individual recognition in animals with limited call sharing or changing repertoires. Animal Behaviour 75, 1187–1194 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carol Bedoya
    • 1
  • Julio Waissman Villanova
    • 2
  • Claudia Victoria Isaza Narvaez
    • 1
  1. 1.SISTEMIC, Departamento de Ingeniería Electrónica, Facultad de IngenieríaUniversidad de Antioquia UdeAMedellínColombia
  2. 2.Departamento de MatemáticasUniversidad de SonoraHermosilloMéxico

Personalised recommendations