Detailed Description of the Development of a MOOC in the Topic of Statistical Machine Translation

  • Marta R. Costa-jussà
  • Lluís Formiga
  • Jordi Petit
  • José A. R. Fonollosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8856)

Abstract

This paper describes the design, development and execution of a MOOC entitled “Approaches to Machine Translation: rule-based, statistical and hybrid”. The course is launched from the Canvas platform used by recognized European universities. The course contains video-lecture, quizzes and laboratory assignments. Evaluation is done using a virtual learning environment for computer programming and peer-to-peer strategies. This MOOC allows to introduce people from various areas to the Machine Translation theory and practice. It also allows to internationalize different tools developed at the Universitat Politècnica de Catalunya.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koehn, P.: Statistical Machine Translation. Cambridge University Press (2010)Google Scholar
  2. 2.
    Costa-jussà, M.R., Farrús, M.: Statistical machine translation enhancements through linguistic levels: A survey. ACM Computing Surveys (2014)Google Scholar
  3. 3.
    Lopez, A., Post, M., Callison-Burch, C., Weese, J., Ganitkevitch, J., Ahmidi, N., Buzek, O., Hanson, L., Jamil, B., Lee, M., Lin, Y.T., Pao, H., Rivera, F., Shahriyari, L., Sinha, D., Teichert, A.R., Wampler, S., Weinberger, M., Xu, D., Yang, L., Zhao, S.: Learning to translate with products of novices: a suite of open-ended challenge problems for teaching mt. TACL 1, 165–178 (2013)Google Scholar
  4. 4.
    Petit, J., Giménez, O., Roura, S.: Jutge.org: An educational programming judge. In: Proc. of the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE-2012), pp. 445–450. Association for Computing Machinery (2012)Google Scholar
  5. 5.
    Giménez, J., Màrquez, L.: Asiya: An Open Toolkit for Automatic Machine Translation (Meta) Evaluation. The Prague Bulletin of Mathematical Linguistics, 77–86 (2010)Google Scholar
  6. 6.
    Godwin-Jones, R.: Emerging technologies challenging hegemonies in online learning. Language Learning & Technology 16(2), 4–13 (2012)Google Scholar
  7. 7.
    Staubitz, T., Renz, J., Willems, C., Jasper, J., Meinel, C.: Lightweight ad hoc assessment of practical programming skills at scale. In: 2014 IEEE Global Engineering Education Conference (EDUCON), pp. 475–483 (2014)Google Scholar
  8. 8.
    Forišek, M.: Security of Programming Contest Systems. In: Dagiene, V., Mittermeir, R. (eds.) Information Technologies at School, pp. 553–563 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Marta R. Costa-jussà
    • 1
  • Lluís Formiga
    • 1
  • Jordi Petit
    • 1
  • José A. R. Fonollosa
    • 1
  1. 1.Departament de Teoria de Senyal i Comunicacions, Departament de Ciències de la ComputacióUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations