Customized Selection in Estimation of Distribution Algorithms

  • Roberto Santana
  • Alexander Mendiburu
  • Jose A. Lozano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8886)


Selection plays an important role in estimation of distribution algorithms. It determines the solutions that will be modeled to represent the promising areas of the search space. There is a strong relationship between the strength of selection and the type and number of dependencies that are captured by the models. In this paper we propose to use different selection probabilities to learn the structural and parametric components of the probabilistic graphical models. Customized selection is introduced as a way to enhance the effect of model learning in the exploratory and exploitative aspects of the search. We use a benchmark of over 15,000 instances of a simplified protein model to illustrate the gains in using customized selection.


selection estimation of distribution algorithms optimization customized selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: Fisher, D.H. (ed.) Proceedings of the 14th International Conference on Machine Learning, pp. 30–38. Morgan Kaufmann, San Francisco (1997)Google Scholar
  2. 2.
    Brownlee, A.E.I., McCall, J., Shakya, S.K.: The Markov network fitness model. In: Shakya, S., Santana, R. (eds.) Markov Networks in Evolutionary Computation, pp. 125–140. Springer (2012)Google Scholar
  3. 3.
    Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cotta, C.: Protein structure prediction using evolutionary algorithms hybridized with backtracking. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 321–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Echegoyen, C., Mendiburu, A., Santana, R., Lozano, J.A.: On the taxonomy of optimization problems under estimation of distribution algorithms. Evolutionary Computation 21(3), 471–495 (2013)CrossRefGoogle Scholar
  6. 6.
    Hirst, J.D.: The evolutionary landscape of functional model proteins. Protein Engineering 12, 721–726 (1999)CrossRefGoogle Scholar
  7. 7.
    Karshenas, H., Santana, R., Bielza, C., Larrañaga, P.: Multi-objective optimization based on joint probabilistic modeling of objectives and variables. IEEE Transactions on Evolutionary Computation 18(4), 519–542 (2014)CrossRefGoogle Scholar
  8. 8.
    Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme algorithms for protein structure prediction. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII. LNCS, vol. 2439, pp. 769–778. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on probabilistic graphical models in evolutionary computation. Journal of Heuristics 18(5), 795–819 (2012)CrossRefGoogle Scholar
  10. 10.
    Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.): Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. Springer (2006)Google Scholar
  11. 11.
    Miquélez, T., Bengoetxea, E., Larrañaga, P.: Evolutionary computation based on Bayesian classifiers. International Journal of Applied Mathematics and Computer Science 14(3), 101–115 (2004)Google Scholar
  12. 12.
    Mühlenbein, H., Mahnig, T., Ochoa, A.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(2), 213–247 (1999)CrossRefGoogle Scholar
  13. 13.
    Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN IV. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Mühlenbein, H., Schlierkamp-Voosen, D.: The science of breeding and its application to the breeder genetic algorithm (BGA). Evolutionary Computation 1(4), 335–360 (1994)CrossRefGoogle Scholar
  15. 15.
    Munetomo, M., Murao, N., Akama, K.: Introducing assignment functions to Bayesian optimization algorithms. Information Sciences 178(1), 152–163 (2008)zbMATHCrossRefGoogle Scholar
  16. 16.
    Pelikan, M., Mühlenbein, H.: The bivariate marginal distribution algorithm. In: Roy, R., Furuhashi, T., Chawdhry, P. (eds.) Advances in Soft Computing - Engineering Design and Manufacturing, pp. 521–535. Springer, London (1999)Google Scholar
  17. 17.
    Santana, R.: Factorized distribution algorithms: Selection without selected population. In: Proceedings of the 17th European Simulation Multiconference ESM 2003, Nottingham, England, pp. 91–97 (2003)Google Scholar
  18. 18.
    Šidák, Z.: Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association 62(318), 626–633 (1967)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Thierens, D., Goldberg, D.E., Pereira, A.G.: Domino convergence, drift, and the temporal-salience structure of problems. In: Proceedings of 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, pp. 535–540 (1998)Google Scholar
  20. 20.
    Valdez-Peña, I.S., Hernández-Aguirre, A., Botello-Rionda, S.: Approximating the search distribution to the selection distribution in EDAs. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2009, pp. 461–468. ACM, New York (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roberto Santana
    • 1
  • Alexander Mendiburu
    • 1
  • Jose A. Lozano
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of the Basque Country (UPV/EHU)GuipuzcoaSpain

Personalised recommendations