Advertisement

Anomaly Detection Using Replicator Neural Networks Trained on Examples of One Class

  • Hoang Anh Dau
  • Vic Ciesielski
  • Andy Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8886)

Abstract

Anomaly detection aims to find patterns in data that are significantly different from what is defined as normal. One of the challenges of anomaly detection is the lack of labelled examples, especially for the anomalous classes. We describe a neural network based approach to detect anomalous instances using only examples of the normal class in training. In this work we train the net to build a model of the normal examples, which is then used to predict the class of previously unseen instances based on reconstruction error rate. The input to this network is also the desired output. We have tested the method on six benchmark data sets commonly used in the anomaly detection community. The results demonstrate that the proposed method is promising for anomaly detection. We achieve F-score of more than 90% on 3 data sets and outperform the original work of Hawkins et al. on the Wisconsin breast cancer set.

Keywords

artificial neural networks replicator neural network auto-encoder anomaly detection one-class learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hawkins, D.M.: Identification of outliers, vol. 11. Springer (1980)Google Scholar
  2. 2.
    Chen, Y., Hu, B., Keogh, E., Batista, G.E.: Dtw-d: time series semi-supervised learning from a single example. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 383–391. ACM (2013)Google Scholar
  3. 3.
    Hawkins, S., He, H., Williams, G.J., Baxter, R.A.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Williams, G., Hawkins, S., Gu, L., Baxter, R., He, H.: A comparative study of rnn for outlier detection in data mining. In: IEEE International Conference on Data Mining, pp. 709–709. IEEE Computer Society (2002)Google Scholar
  5. 5.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41(3), 15 (2009)CrossRefGoogle Scholar
  6. 6.
    Moya, M.M., Hush, D.R.: Network constraints and multi-objective optimization for one-class classification. Neural Networks 9(3), 463–474 (1996)CrossRefGoogle Scholar
  7. 7.
    Hecht-Nielsen, R.: Replicator neural networks for universal optimal source coding. Science-New York Then Washington, 1860–1860 (1995)Google Scholar
  8. 8.
    Tóth, L., Gosztolya, G.: Replicator neural networks for outlier modeling in segmental speech recognition. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 996–1001. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Ciesielski, V., Ha, V.P.: Texture detection using neural networks trained on examples of one class. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS, vol. 5866, pp. 140–149. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Weka, http://www.cs.waikato.ac.nz/ml/weka/downloading.html/ (online; accessed July 23, 2014)
  11. 11.
    Javanns: Java neural network simulator, http://www.ra.cs.uni-tuebingen.de/software/JavaNNS/ (online; accessed July 12, 2014)
  12. 12.
    Breast cancer wisconsin (prognostic) data set, http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/ (online; accessed July 9, 2014)
  13. 13.
    Ionosphere data set, https://archive.ics.uci.edu/ml/datasets/Ionosphere/ (online; accessed July 17, 2014)
  14. 14.
    Musk (version 2) data set, https://archive.ics.uci.edu/ml/datasets/Musk+Version+2/ (online; accessed July 17, 2014)
  15. 15.
    Musk (version 2)data set, http://lib.stat.cmu.edu/datasets/ (online; accessed July 18, 2014)
  16. 16.
    Chandola time series data sets, http://www-users.cs.umn.edu/~chandola/timeseries/ (online; accessed July 9, 2014)
  17. 17.
    The ucr time series classification/clustering page, http://www.cs.ucr.edu/~eamonn/time_series_data/ (online; accessed July 9, 2014)
  18. 18.
    Chandola, V.: Anomaly detection for symbolic sequences and time series data. Ph.D. dissertation, University of Minnesota (2009)Google Scholar
  19. 19.
    Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. ACM Sigmod Record 30(2), 37–46 (2001)CrossRefGoogle Scholar
  20. 20.
    Campbell, C., Bennett, K.P.: A linear programming approach to novelty detection. In: Proceedings of the 2000 Conference on Advances in Neural Information Processing Systems 13, vol. 13, p. 395. MIT Press (2001)Google Scholar
  21. 21.
    Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.-K.: Systematic construction of anomaly detection benchmarks from real data. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, pp. 16–21. ACM (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hoang Anh Dau
    • 1
  • Vic Ciesielski
    • 1
  • Andy Song
    • 1
  1. 1.RMIT UniversityMelbourneAustralia

Personalised recommendations