A Probabilistic Evolutionary Optimization Approach to Compute Quasiparticle Braids

  • Roberto Santana
  • Ross B. McDonald
  • Helmut G. Katzgraber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8886)


This paper proposes the use of estimation of distribution algorithms to deal with the problem of finding an optimal product of braid generators in topological quantum computing. We investigate how the regularities of the braid optimization problem can be translated into statistical regularities by means of the Boltzmann distribution. The introduced algorithm obtains solutions with an accuracy in the order of 10− 6, and lengths up to 9 times shorter than those expected from braids of the same accuracy obtained with other methods.


topological computing quasiparticle braids probabilistic graphical models EDAs braid optimization Fibonacci anyons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In: Fisher, D.H. (ed.) Proceedings of the 14th International Conference on Machine Learning, pp. 30–38 (1997)Google Scholar
  2. 2.
    Bonesteel, N.E., Hormozi, L., Zikos, G., Simon, S.H.: Braid topologies for quantum computation. Physical Review Letters 95(14), 140503 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. arXiv preprint quant-ph/0505030 (2005)Google Scholar
  4. 4.
    De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding optima by estimating probability densities. In: Mozer, et al. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 424–430. The MIT Press, Cambridge (1997)Google Scholar
  5. 5.
    Henrion, M.: Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In: Lemmer, J.F., Kanal, L.N. (eds.) Proceedings of the Second Annual Conference on Uncertainty in Artificial Intelligence, pp. 149–164. Elsevier (1988)Google Scholar
  6. 6.
    Hintze, J.L., Nelson, R.D.: Violin plots: a box plot-density trace synergism. The American Statistician 52(2), 181–184 (1998)Google Scholar
  7. 7.
    Larrañaga, P., Karshenas, H., Bielza, C., Santana, R.: A review on probabilistic graphical models in evolutionary computation. Journal of Heuristics 18(5), 795–819 (2012)CrossRefGoogle Scholar
  8. 8.
    McDonald, R.B., Katzgraber, H.G.: Genetic braid optimization: A heuristic approach to compute quasiparticle braids. Physical Review B 87(5), 054414 (2013)Google Scholar
  9. 9.
    Mühlenbein, H., Mahnig, T., Ochoa, A.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(2), 213–247 (1999)CrossRefGoogle Scholar
  10. 10.
    Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Read, N., Rezayi, E.: Beyond paired quantum Hall states: parafermions and incompressible states in the first excited Landau level. Physical Review B 59(12), 8084 (1999)CrossRefGoogle Scholar
  12. 12.
    Santana, R., Bielza, C., Larrañaga, P.: Conductance interaction identification by means of Boltzmann distribution and mutual information analysis in conductance-based neuron models. BMC Neuroscience 13(suppl 1), P100 (2012)Google Scholar
  13. 13.
    Santana, R., Larrañaga, P., Lozano, J.A.: Protein folding in simplified models with estimation of distribution algorithms. IEEE Transactions on Evolutionary Computation 12(4), 418–438 (2008)CrossRefGoogle Scholar
  14. 14.
    Sarma, S.D., Freedman, M., Nayak, C.: Topological quantum computation. Physics Today 59(7), 32–38 (2006)CrossRefGoogle Scholar
  15. 15.
    Xu, H., Wan, X.: Constructing functional braids for low-leakage topological quantum computing. Physical Review A 78(4), 042325 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roberto Santana
    • 1
  • Ross B. McDonald
    • 2
  • Helmut G. Katzgraber
    • 2
    • 3
  1. 1.Department of Computer Science and Artificial IntelligenceUniversity of the Basque Country (UPV/EHU)GuipuzcoaSpain
  2. 2.Department of Physics and AstronomyTexas A&M UniversityCollege StationUSA
  3. 3.Santa Fe InstituteSanta FeUSA

Personalised recommendations