Advertisement

Grounding Dynamic Spatial Relations for Embodied (Robot) Interaction

  • Michael Spranger
  • Jakob Suchan
  • Mehul Bhatt
  • Manfred Eppe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8862)

Abstract

This paper presents a computational model of the processing of dynamic spatial relations occurring in an embodied robotic interaction setup. A complete system is introduced that allows autonomous robots to produce and interpret dynamic spatial phrases (in English) given an environment of moving objects. The model unites two separate research strands: computational cognitive semantics and on commonsense spatial representation and reasoning. The model for the first time demonstrates an integration of these different strands.

Keywords

Computational cognitive semantics commonsense spatial reasoning spatio-temporal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, M., Pratt-Hartmann, I.E., Van Benthem, J.F.: Handbook of Spatial Logics. Springer-Verlag New York, Inc., Secaucus (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative spatial and temporal reasoning: Emerging applications, trends, and directions. Spatial Cognition & Computation 11(1), 1–14 (2011)CrossRefGoogle Scholar
  4. 4.
    Bhatt, M.: Reasoning about space, actions and change: A paradigm for applications of spatial reasoning. In: Qualitative Spatial Representation and Reasoning: Trends and Future Directions. IGI Global, USA (2012)Google Scholar
  5. 5.
    Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): A Declarative Spatial Reasoning Framework. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bhatt, M., Schultz, C., Freksa, C.: The ‘Space’ in Spatial Assistance Systems: Conception, Formalisation and Computation. In: Tenbrink, T., Wiener, J., Claramunt, C. (eds.) Representing Space in Cognition: Interrelations of Behavior, Language, and Formal Models. Explorations in Language and Space. Oxford University Press (2013) 978-0-19-967991-1Google Scholar
  7. 7.
    Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Representing and reasoning with qualitative spatial relations about regions. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 97–134. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  8. 8.
    Davis, E.: Qualitative reasoning and spatio-temporal continuity. In: Hazarika, S.M. (ed.) Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, pp. 97–146. IGI Global, Hershey (2012)CrossRefGoogle Scholar
  9. 9.
    Dubba, K., Bhatt, M., Dylla, F., Hogg, D., Cohn, A.: Interleaved inductive-abductive reasoning for learning complex event models. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS (LNAI), vol. 7207, pp. 113–129. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Fasola, J., Mataric, M.J.: Using semantic fields to model dynamic spatial relations in a robot architecture for natural language instruction of service robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 143–150. IEEE (2013)Google Scholar
  11. 11.
    Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M., Travé-Massuyès, L. (eds.) Decision Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Amsterdam (1991)Google Scholar
  12. 12.
    Galton, A.: Qualitative Spatial Change. Oxford University Press (2000)Google Scholar
  13. 13.
    Johnson-Laird, P.N.: Procedural semantics. Cognition 5(3), 189–214 (1977)CrossRefGoogle Scholar
  14. 14.
    Kelleher, J., Kruijff, G.J., Costello, F.: ACL-44: Proceedings of the 21st International Conference on Computational Linguistics, Morristown, NJ, USAGoogle Scholar
  15. 15.
    Moratz, R., Tenbrink, T.: Spatial reference in linguistic human-robot interaction: Iterative, empirically supported development of a model of projective relations. Spatial Cognition & Computation 6(1), 63–107 (2006)CrossRefGoogle Scholar
  16. 16.
    Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In: Cohn, A.G., Schubert, L.K., Shapiro, S.C. (eds.) Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), Trento, Italy, June 2-5, pp. 131–143. Morgan Kaufmann (1998)Google Scholar
  17. 17.
    Regier, T.: The emergence of words: Attentional learning in form and meaning. Cognitive Science 29(6), 819–865 (2005)CrossRefGoogle Scholar
  18. 18.
    Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Handbook of Spatial Logics [1], pp. 161–215Google Scholar
  19. 19.
    Spranger, M., Loetzsch, M.: In: Steels, L. (ed.) Design Patterns in Fluid Construction Grammar, pp. 265–298. John BenjaminsGoogle Scholar
  20. 20.
    Spranger, M., Loetzsch, M., Steels, L.: A Perceptual System for Language Game Experiments. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 89–110. Springer (2012)Google Scholar
  21. 21.
    Spranger, M., Pauw, S.: Dealing with Perceptual Deviation - Vague Semantics for Spatial Language and Quantification. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 173–192. Springer (2012)Google Scholar
  22. 22.
    Spranger, M., Pauw, S., Loetzsch, M., Steels, L.: Open-ended Procedural Semantics. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 153–172. Springer (2012)Google Scholar
  23. 23.
    Spranger, M.: Evolving grounded spatial language strategies. KI - Künstliche Intelligenz 27(2), 97–106 (2013), http://dx.doi.org/10.1007/s13218-013-0245-4 CrossRefGoogle Scholar
  24. 24.
    Steels, L.: Evolving grounded communication for robots. Trends in Cognitive Sciences 7(7), 308–312 (2003)CrossRefGoogle Scholar
  25. 25.
    Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Benjamins (2011)Google Scholar
  26. 26.
    Suchan, J., Bhatt, M., Santos, P.E.: Perceptual narratives of space and motion for semantic interpretation of visual data. In: Proceedings of International Workshop on Computer Vision + Ontology Applied Cross-Disciplinary Technologies (CONTACT). ECCV 2014 – European Conference on Computer Vision (2014)Google Scholar
  27. 27.
    Talmy, L.: Toward a cognitive semantics. Concept Structuring Systems, vol. 1. The MIT Press (2000)Google Scholar
  28. 28.
    Tellex, S., Kollar, T., Dickerson, S., Walter, M.R., Banerjee, A.G., Teller, S., Roy, N.: Approaching the symbol grounding problem with probabilistic graphical models. AI Magazine 32(4), 64–76 (2011)Google Scholar
  29. 29.
    Tenbrink, T.: Space, time, and the use of language: An investigation of relationships. Cognitive Linguistics Research, vol. 36. Walter de Gruyter, Berlin (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Spranger
    • 1
  • Jakob Suchan
    • 2
  • Mehul Bhatt
    • 2
  • Manfred Eppe
    • 3
  1. 1.Sony CSLTokyoJapan
  2. 2.Cognitive Systems, and Spatial Cognition Research Center (SFB/TR 8)University of BremenGermany
  3. 3.IIIA-CSICSpain

Personalised recommendations