Grounding Dynamic Spatial Relations for Embodied (Robot) Interaction

  • Michael Spranger
  • Jakob Suchan
  • Mehul Bhatt
  • Manfred Eppe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8862)


This paper presents a computational model of the processing of dynamic spatial relations occurring in an embodied robotic interaction setup. A complete system is introduced that allows autonomous robots to produce and interpret dynamic spatial phrases (in English) given an environment of moving objects. The model unites two separate research strands: computational cognitive semantics and on commonsense spatial representation and reasoning. The model for the first time demonstrates an integration of these different strands.


Computational cognitive semantics commonsense spatial reasoning spatio-temporal dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiello, M., Pratt-Hartmann, I.E., Van Benthem, J.F.: Handbook of Spatial Logics. Springer-Verlag New York, Inc., Secaucus (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bhatt, M., Guesgen, H., Wölfl, S., Hazarika, S.: Qualitative spatial and temporal reasoning: Emerging applications, trends, and directions. Spatial Cognition & Computation 11(1), 1–14 (2011)CrossRefGoogle Scholar
  4. 4.
    Bhatt, M.: Reasoning about space, actions and change: A paradigm for applications of spatial reasoning. In: Qualitative Spatial Representation and Reasoning: Trends and Future Directions. IGI Global, USA (2012)Google Scholar
  5. 5.
    Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): A Declarative Spatial Reasoning Framework. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bhatt, M., Schultz, C., Freksa, C.: The ‘Space’ in Spatial Assistance Systems: Conception, Formalisation and Computation. In: Tenbrink, T., Wiener, J., Claramunt, C. (eds.) Representing Space in Cognition: Interrelations of Behavior, Language, and Formal Models. Explorations in Language and Space. Oxford University Press (2013) 978-0-19-967991-1Google Scholar
  7. 7.
    Cohn, A., Bennett, B., Gooday, J., Gotts, N.: Representing and reasoning with qualitative spatial relations about regions. In: Stock, O. (ed.) Spatial and Temporal Reasoning, pp. 97–134. Kluwer Academic Publishers, Dordrecht (1997)CrossRefGoogle Scholar
  8. 8.
    Davis, E.: Qualitative reasoning and spatio-temporal continuity. In: Hazarika, S.M. (ed.) Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions, pp. 97–146. IGI Global, Hershey (2012)CrossRefGoogle Scholar
  9. 9.
    Dubba, K., Bhatt, M., Dylla, F., Hogg, D., Cohn, A.: Interleaved inductive-abductive reasoning for learning complex event models. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS (LNAI), vol. 7207, pp. 113–129. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Fasola, J., Mataric, M.J.: Using semantic fields to model dynamic spatial relations in a robot architecture for natural language instruction of service robots. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 143–150. IEEE (2013)Google Scholar
  11. 11.
    Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M., Travé-Massuyès, L. (eds.) Decision Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Amsterdam (1991)Google Scholar
  12. 12.
    Galton, A.: Qualitative Spatial Change. Oxford University Press (2000)Google Scholar
  13. 13.
    Johnson-Laird, P.N.: Procedural semantics. Cognition 5(3), 189–214 (1977)CrossRefGoogle Scholar
  14. 14.
    Kelleher, J., Kruijff, G.J., Costello, F.: ACL-44: Proceedings of the 21st International Conference on Computational Linguistics, Morristown, NJ, USAGoogle Scholar
  15. 15.
    Moratz, R., Tenbrink, T.: Spatial reference in linguistic human-robot interaction: Iterative, empirically supported development of a model of projective relations. Spatial Cognition & Computation 6(1), 63–107 (2006)CrossRefGoogle Scholar
  16. 16.
    Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. In: Cohn, A.G., Schubert, L.K., Shapiro, S.C. (eds.) Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR 1998), Trento, Italy, June 2-5, pp. 131–143. Morgan Kaufmann (1998)Google Scholar
  17. 17.
    Regier, T.: The emergence of words: Attentional learning in form and meaning. Cognitive Science 29(6), 819–865 (2005)CrossRefGoogle Scholar
  18. 18.
    Renz, J., Nebel, B.: Qualitative spatial reasoning using constraint calculi. In: Handbook of Spatial Logics [1], pp. 161–215Google Scholar
  19. 19.
    Spranger, M., Loetzsch, M.: In: Steels, L. (ed.) Design Patterns in Fluid Construction Grammar, pp. 265–298. John BenjaminsGoogle Scholar
  20. 20.
    Spranger, M., Loetzsch, M., Steels, L.: A Perceptual System for Language Game Experiments. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 89–110. Springer (2012)Google Scholar
  21. 21.
    Spranger, M., Pauw, S.: Dealing with Perceptual Deviation - Vague Semantics for Spatial Language and Quantification. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 173–192. Springer (2012)Google Scholar
  22. 22.
    Spranger, M., Pauw, S., Loetzsch, M., Steels, L.: Open-ended Procedural Semantics. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 153–172. Springer (2012)Google Scholar
  23. 23.
    Spranger, M.: Evolving grounded spatial language strategies. KI - Künstliche Intelligenz 27(2), 97–106 (2013), CrossRefGoogle Scholar
  24. 24.
    Steels, L.: Evolving grounded communication for robots. Trends in Cognitive Sciences 7(7), 308–312 (2003)CrossRefGoogle Scholar
  25. 25.
    Steels, L. (ed.): Design Patterns in Fluid Construction Grammar. John Benjamins (2011)Google Scholar
  26. 26.
    Suchan, J., Bhatt, M., Santos, P.E.: Perceptual narratives of space and motion for semantic interpretation of visual data. In: Proceedings of International Workshop on Computer Vision + Ontology Applied Cross-Disciplinary Technologies (CONTACT). ECCV 2014 – European Conference on Computer Vision (2014)Google Scholar
  27. 27.
    Talmy, L.: Toward a cognitive semantics. Concept Structuring Systems, vol. 1. The MIT Press (2000)Google Scholar
  28. 28.
    Tellex, S., Kollar, T., Dickerson, S., Walter, M.R., Banerjee, A.G., Teller, S., Roy, N.: Approaching the symbol grounding problem with probabilistic graphical models. AI Magazine 32(4), 64–76 (2011)Google Scholar
  29. 29.
    Tenbrink, T.: Space, time, and the use of language: An investigation of relationships. Cognitive Linguistics Research, vol. 36. Walter de Gruyter, Berlin (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Spranger
    • 1
  • Jakob Suchan
    • 2
  • Mehul Bhatt
    • 2
  • Manfred Eppe
    • 3
  1. 1.Sony CSLTokyoJapan
  2. 2.Cognitive Systems, and Spatial Cognition Research Center (SFB/TR 8)University of BremenGermany
  3. 3.IIIA-CSICSpain

Personalised recommendations