A Game Model with Private Goal and Belief

  • Guihua Wu
  • Xudong Luo
  • Qiaoting Zhong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8862)

Abstract

In real life, it is difficult to hold some assumptions of the classic game theory. For example, when a player of a game chooses a strategy, it should consider not only payoff from taking the strategy and others’ best responses, but also its goal and belief about others, which are normally private in real life. However, in game theory they are assumed “common knowledge” among players. To address the problem, this paper proposes a game model that allows the private goals and beliefs of players, which are represented in propositional formulae in order to specify reasoning procedures that the players choose their strategies in a game. Moreover, we reveal how players’ private goals and beliefs influence the outcomes of their game. Finally, we examplify how our model can be used to effectively explain an interesting game.

Keywords

Logic Goals Beliefs Game Theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36(1), 48–49 (1950)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bénabou, R., Tirole, J.: Intrinsic and Extrinsic Motivation. Review of Economic Studies 70(3), 489–520 (2003)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Ågotnes, T., Harrenstein, P., van der Hoek, W., Wooldridge, M.: Verifiable equilibria in Boolean games. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 689–695 (2013)Google Scholar
  4. 4.
    Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Effectivity functions and efficient coalitions in Boolean games. Synthese 187, 73–103 (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Mihaylov, M.: Decentralised Coordination in Multi-Agent Systems, PhD thesis, Vrije Universiteit Brussel, Brussels (2012)Google Scholar
  6. 6.
    Wooldridge, M., Endriss, U., Kraus, S., Lang, J.: Incentive engineering for Boolean games. Artificial Intelligence 195, 418–439 (2013)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Eichberger, J., Kelsey, D., Schipper, B.C.: Ambiguity and social interaction. Oxford Economic Papers 62(2), 355–379 (2008)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Zhang, Y., Luo, X., Ma, W.: Security games with ambiguous information about attacker types. In: Cranefield, S., Nayak, A. (eds.) AI 2013. LNCS (LNAI), vol. 8272, pp. 14–25. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Cui, J., Luo, X., Sim, K.M.: A New Epistemic logic Model of Regret Games. In: Wang, M. (ed.) KSEM 2013. LNCS (LNAI), vol. 8041, pp. 372–386. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Van Benthem, J.: Rational dynamics and epistemic logic in games. International Game Theory Review 9(1), 13–45 (2007)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: Theory and practice. The Knowlegde Engineer Review 10(2), 115–152 (1995)CrossRefGoogle Scholar
  12. 12.
    Savage, L.: The Foundations of Statistics. Wiley, New York (1954)MATHGoogle Scholar
  13. 13.
    Ellsberg, D.: Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economics 75, 643–669 (1961)CrossRefMATHGoogle Scholar
  14. 14.
    Batson, C.D.: Altruism in humans. Oxford University Press (2011)Google Scholar
  15. 15.
    Huang, F., Luo, X., Leung, H.-F., Zhong, Q.: Games played by network players. In: Proceedings of the 2013 IEEE International Joint Conferences on Web Intelligence and Intelligent Agent Technology, pp. 1–8 (2013)Google Scholar
  16. 16.
    Harrenstein, P., van der Hoek, W., Meyer, J.-J.C., Witteveen, C.: Boolean games. In: Proceeding of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, pp. 287–298 (2001)Google Scholar
  17. 17.
    Marco, G.D., Romaniello, M.: Beliefs correspondence and equilibria in ambiguous games. Munich Personal RePEc Archive (2010)Google Scholar
  18. 18.
    Bonzon, E., Lagasquie-Schiex, M.-C., Lang, J.: Dependencies between players in Boolean games. International Journal of Approximate Reasoning 50(6), 899–914 (2009)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a Nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57(3), 57–187 (1989)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Gilboa, I., Schmeidler, D.: Maxmin expected utility with a non-unique prior. Journal of Mathematical Economics 18, 141–153 (1989)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Choquet, G.: Theory of capacities. Annales de l’institut Fourier 5, 131–295 (1953)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Elster, J.: Emotions and economic theory. Journal of Economic Literature 36(1), 47–74 (1998)Google Scholar
  24. 24.
    Klibanoff, P.: Characterizing Uncertainty Aversion through Preference for Mixtures. Social Choice and Welfare 18(2), 289–301 (2001)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Zhang, Y., Luo, X., Leung, H.-F.: Fuzzily Constrained Games. In: Proceedings of the 2013 IEEE International Joint Conferences on Web Intelligence and Intelligent Agent Technology, pp. 361–368 (2013)Google Scholar
  26. 26.
    McCain. R. A., A Non-technical Introduction to the Analysis of strategy. Tomson South-Western (2004)Google Scholar
  27. 27.
    Milovsky, Nicholas: The Basics of Game Theory and Associated Games (retrieved February 11, 2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guihua Wu
    • 1
  • Xudong Luo
    • 1
  • Qiaoting Zhong
    • 1
  1. 1.Institute of Logic and CognitionSun Yat-sen UniversityGuangzhouChina

Personalised recommendations