Modelling as a Method for Evaluating Natural Landscape Typology: The Case of Slovenia

Chapter
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

Modern technology and data make it possible to use various geo-information tools to mitigate certain problems in determining or verifying natural landscape classifications, especially in connection with objectivity and transparency. This chapter presents quantitative evaluation of landscape typology based on the natural landscape typology of Slovenia from 1998. Based on this existing manually outlined typology of Slovenia, several modelled natural landscape typologies were produced using four selected data layers (elevation, slope, permeability and precipitation regime) and various geo-information tools. Modelled typologies were developed based on the rules (models) determined with learning samples. The next step analyzed the match of the modelled and reference natural landscape typologies and how successfully the reference typology can be reproduced using numerical models. By comparing the models and the original, it was also possible to establish the locations of the types that were classified (confirmed) the same by different models and those that were not confirmed by any model. By overlapping several modelled typologies produced with different methods, areas were identified that proved to be well classified, and areas that should be checked in terms of their classification into a separate, specific type. The conclusion proposes a general procedure for evaluating landscape classification.

Keywords

Natural landscape types Typology Geographical information systems Supervised classification Geography Slovenia 

References

  1. Bailey RG (1996) Ecosystem geography. Springer, New YorkCrossRefGoogle Scholar
  2. Belbin L, McDonald C (1993) Comparing three classification strategies for use in ecology. J Veg Sci 4:341–348. doi:10.2307/3235592 CrossRefGoogle Scholar
  3. Bernert JA, Eilers JM, Sullivan TJ, Freemark KE, Ribic C (1997) A quantitative method for delineating regions: an example for the western corn belt plains ecoregion of the USA. Environ Manage 21:405–420CrossRefGoogle Scholar
  4. Breskvar Žaucer L, Marušič J (2006) Analiza krajinskih tipov z uporabo umetnih nevronskih mrež. Geod vestn 50:224–237Google Scholar
  5. Bryan BA (2006) Synergistic techniques for better understanding and classifying the environmental structure of landscapes. Environ Manage 37:126–140CrossRefGoogle Scholar
  6. Burrough PA, Wilson JP, van Gaans PFM, Hansen AJ (2001) Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landscape Ecol 16:523–546CrossRefGoogle Scholar
  7. Castillo-Rodríguez M, López-Blanco J, Muñoz-Salinas E (2010) A geomorphologic GIS-multivariate analysis approach to delineate environmental units, a case study of La Malinche Volcano (Central México). Appl Geogr 30:629–638. doi:10.1016/j.apgeog.2010.01.003
  8. Ciglič R (2012) Evaluation of digital data layers for establishing natural landscape types in Slovenia. In: Andrei MT (ed) Landscapes: perception, knowledge, awareness, and action. Proceedings of the FG-SHU international symposium on geography. Addelton Academic Publishers, New York, pp 39–59Google Scholar
  9. Ciglič R (2014) Analiza naravnih pokrajinskih tipov Slovenije z GIS-om. Založba ZRC, LjubljanaGoogle Scholar
  10. Ciglič R, Perko D (2012) Slovenia in geographical typifications and regionalizations of Europe. Geografski vestnik 84:23–38Google Scholar
  11. Ciglič R, Perko D (2013) Europe’s landscape hotspots. Acta geogr Slov 53:117–139. doi:10.3986/AGS53106
  12. Eastman JR (2009) IDRISI Taiga. Guide to GIS and image processing. Clark Labs, Clark University, WorcesterGoogle Scholar
  13. Ellison AM (2010) Repeatability and transparency in ecological research. Ecology 91:2536–2549. doi:http://dx.doi.org/10.1890/09-0032.1
  14. Gams I (1984) Metodologija geografske razčlenitve ozemlja. Geografski vestnik 56:75–82Google Scholar
  15. Gams I (2000) Stanje v (prirodno)geografski regionalizaciji Slovenije. Geografski vestnik 72:53–60Google Scholar
  16. Hargrove WW, Hoffman FM (2005) Potential of multivariate quantitative methods for delineation and visualization of ecoregions. Environ Manage 34:39–60. doi:10.1007/s00267-003-1084-0 CrossRefGoogle Scholar
  17. Hazeu GW, Metzger MJ, Mücher CA, Perez-Soba M, Renetzeder C, Andersen E (2010) European environmental stratifications and typologies: an overview. Agr Ecosyst Environ 142:29–39. doi:10.1016/j.agee.2010.01.009 CrossRefGoogle Scholar
  18. Idrisi Taiga Help System (16.05) (2010) Clark Labs, Clark University, Worcester. http://www.clarklabs.org/support/IDRISI-Taiga-Service-Update-16-05.cfm. Accessed 25 Sept 2014
  19. Ilešič S (1957/1958) Problemi geografske rajonizacije ob primeru Slovenije. Geografski vestnik 29/30:83–140Google Scholar
  20. Jiang B, Ding X, Ma L, He Y, Wang T, Xie W (2008) A hybrid feature selection algorithm: combination of symmetrical uncertainty and genetic algorithms. In: Zhang XS, Chen L, Wu LY, Wang Y (eds) Optimization and systems biology. World Publishing Corporation, Beijing, pp 152–157Google Scholar
  21. Kireyeu V, Shkaruba A (2010) Landscape classifications of Belarus for studies of environmental change. In: Machar I, Kovár P (eds) Landscape structures, functions and management: response to global ecological change. CZ-IALE, Prague, p 17Google Scholar
  22. Kladnik D (1996) Naravnogeografske členitve Slovenije. Geografski vestnik 68:123–159Google Scholar
  23. Klemenčič MM (2004) Družbenogeografske regionalizacije Slovenije. In: Drozg V (ed) Teorija in praksa regionalizacije Slovenije. Pedagoška fakulteta, Maribor, pp 37–43Google Scholar
  24. Kononenko I, Kukar M (2007) Machine learning and data mining: introduction to principles and algorithms. Horwood Publishing, ChichesterCrossRefGoogle Scholar
  25. Leathwick JR, Overton JM, McLeod M (2003) An environmental domain classification of New Zealand and its use as a tool for biodiversity management. Conserv Biol 17:1612–1623. doi:10.1111/j.1523-1739.2003.00469.x CrossRefGoogle Scholar
  26. Lin N, Noe D, He X (2006) Tree-based methods and their applications. In: Phoam H (ed) Springer handbook of engineering statistics. Springer, London, pp 551–570CrossRefGoogle Scholar
  27. Loveland TR, Merchant JM (2004) Ecoregions and ecoregionalization: geographical and ecological perspectives. Environ Manage 34:1–13. doi:10.1007/s00267-003-5181-x CrossRefGoogle Scholar
  28. McCoy RM (2005) Field methods in remote sensing. Guilford press, New YorkGoogle Scholar
  29. McMahon G, Wiken EB, Gauthier DA (2004) Toward a scientifically rigorous basis for developing mapped ecological regions. Environ Manage 34:111–214. doi:10.1007/s00267-004-0170-2 CrossRefGoogle Scholar
  30. McRoberts RE (2012) Estimating forest attribute parameters for small areas using nearest neighbors techniques. Forest Ecol Manag 272:3–12. doi:10.1016/j.foreco.2011.06.039 CrossRefGoogle Scholar
  31. Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:563–579. doi:10.1111/j.1466-822X.2005.00190.x CrossRefGoogle Scholar
  32. Mitchell TM (1997) Lecture slides for textbook Machine learning. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/mlbook/ch3.pdf. Accessed 25 Sept 2014
  33. Mücher CA, Bunce RGH, Jongman RHG, Klijn JA, Koomen AJM, Metzger MJ, Wascher DM (2003) Identification and characterisation of environments and landscapes in Europe. Wageningen, AlterraGoogle Scholar
  34. Mücher CA, Klijn JA, Wascher DM, Schaminée JHJ (2009) A new European landscape classification (LANMAP): a transparent, flexible and user-oriented methodology to distinguish landscapes. Ecol Indic 10:87–103. doi:10.1016/j.ecolind.2009.03.018 CrossRefGoogle Scholar
  35. Mücher CA, Wascher DM, Klijn JA, Koomen AJM, Jongman RHG (2006) A new European landscape map as an integrative framework for landscape character assessment. In: Bunce RGH, Jongman RHG (eds) Landscape ecology in the Mediterranean, inside and outside approaches. IALE, Faro, pp 233–243Google Scholar
  36. Natek K, Žiberna I (2004) Naravnogeografske regionalizacije Slovenije. In: Drozg (ed) Teorija in praksa regionalizacije Slovenije. Pedagoška fakulteta, Maribor, pp 25–36Google Scholar
  37. Ogrin D (2004) Modern climate change in Slovenia. In: Orožen Adamič M (ed) Slovenia: a geographical overview. Zveza geografov Slovenije, Ljubljana, pp 45–50Google Scholar
  38. Owen SM, MacKenzie AR, Bunce RGH, Stewart HE, Donovan RG, Stark G, Hewitt CN (2006) Urban land classification and its uncertainties using principal component and cluster analyses: a case study for the UK West Midlands. Landscape Urban Plan 78:311–321. doi:10.1016/j.landurbplan.2005.11.002 CrossRefGoogle Scholar
  39. Perko D (1998) The Regionalization of Slovenia. Geografski zbornik 38:11–57Google Scholar
  40. Perko D (2004) Slovenia at the junction of major European geographical units. In: Orožen Adamič M (ed) Slovenia: a geographical overview. Zveza geografov Slovenije, Ljubljana, pp 11–20Google Scholar
  41. Perko D (2007) Landscapes. In: Fridl J, Kladnik D, Orožen Adamič M, Pavšek M, Perko D, Repolusk P, Urbanc M (eds) Slovenia in focus. Založba ZRC, Ljubljana, pp 33–55Google Scholar
  42. Plut D (1981) Pokrajinska ekologija Bele krajine. Research project, Inštitut za geografijo Univerze Edvarda Kardelja v LjubljaniGoogle Scholar
  43. Plut D (1999) Regionalizacija Slovenije po sonaravnih kriterijih. Geografski vestnik 71:9–25Google Scholar
  44. Renetzeder C, van Eupen M, Mücher CA, Wrbka T (2008) A spatial regional reference framework for sustainability assessment in Europe. In: Helming K, Pérez-Soba M, Tabbush P (eds) Sustainability impact assessment of land use changes. Springer, Berlin, pp 249–268CrossRefGoogle Scholar
  45. Repe B (2004) Soils of Slovenia. In: Orožen Adamič M (ed) Slovenia: a geographical overview. Zveza geografov Slovenije, Ljubljana, pp 51–56Google Scholar
  46. Richards J, Jia X (2006) Remote sensing digital image analysis: an introduction. Springer, BerlinGoogle Scholar
  47. Romportl D (2009) Landscape typology of the Czech Republic (Typologie krajiny České republiky). Dissertation, Charles University in PragueGoogle Scholar
  48. Soto S, Pintó J (2010) Delineation of natural landscape units for Puerto Rico. Appl geogr 30:720–730. doi:10.1016/j.apgeog.2010.01.010 CrossRefGoogle Scholar
  49. SPSS Statistics 17.0 Algorithms (2007) SPSS Inc., Chicago. http://www.docs.is.ed.ac.uk/skills/documents/3663/SPSSStatistics17.0Algorithms.pdf. Accessed 25 Sept 2014
  50. Tirelli T, Pessani D (2011) Importance of feature selection in decision-tree and artificial-neural-network ecological applications. Alburnus alburnus alborella: a practical example. Ecol Inform 6:309–315. doi:10.1016/j.ecoinf.2010.11.001 Google Scholar
  51. Van Eetvelde V, Antrop M (2009) A stepwise multi-scale typology and characterisation for trans-regional integration, applied on the federal state of Belgium. Landscape urban plan 91:160–170. doi:10.1016/j.landurbplan.2008.12.008 CrossRefGoogle Scholar
  52. Wascher DM (ed) (2005) European landscape character areas—typologies, cartography and indicators for the assessment of sustainable landscapes. Final project report as deliverable from the EU’s accompanying measure project European Landscape Character Assessment Initiative (ELCAI), funded under the 5th framework programme on energy, environment and sustainable development (4.2.2). Landscape Europe, WageningenGoogle Scholar
  53. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufman, AmsterdamGoogle Scholar
  54. Wolock DM, Winter TC, McMahon G (2004) Delineation and evaluation of hydrologica-landscape regions in the United States using geographic information system tools and multivariate statistical analyses. Environ Manage 34:71–88. doi:10.1007/s00267-003-5077-9 CrossRefGoogle Scholar
  55. Yohannes Y, Webb P (1999) Classification and regression trees, CARTTM: a user manual for identifying indicators of vulnerability to famine and chronic food insecurity. International Food Policy Research Institute, WashingtonGoogle Scholar
  56. Zhou Y, Narumalani S, Waltman WJ, Waltman SW, Palecki MA (2003) A GIS-based spatial pattern analysis model for eco-region mapping and characterization. Int J Geogr Inf Sci 17:445–462. doi:10.1080/1365881031000086983 CrossRefGoogle Scholar
  57. Zonneveld IS (1994) Basic principles of classification. In: Klijn F (ed) Ecosystem classification for environmental management. Kluwer, Dordrecht, pp 23–48CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Research Centre of the Slovenian Academy of the Sciences and ArtsLjubljanaSlovenia

Personalised recommendations