Lipolytic Extremozymes from Psychro- and (Hyper-)Thermophilic Prokaryotes and Their Potential for Industrial Applications

  • Skander Elleuche
  • Carola Schröder
  • Garabed Antranikian
Part of the Grand Challenges in Biology and Biotechnology book series (GCBB, volume 1)


Lipolytic enzymes include esterases and lipases that are capable of hydrolyzing and synthesizing ester linkages in triglycerides. These ubiquitous biocatalysts are found in all domains of life. However, the focus of this chapter exclusively covers lipolytic extremozymes from psychro- and (hyper-)thermophiles, while enzymes from mesophilic prokaryotes are not considered. Lipases and esterases from extremophiles display optimal catalytic activity from the freezing point of water up to 100 °C. Due to their tolerance against harsh conditions and their ability to hydrolyze a broad range of natural and non-natural esters, they are considered to be applicable in versatile industry fields. Transesterification reactions of lipases and esterases play an important role in the food industry, whereas the release of free fatty acids is relevant e. g. in the laundry industry aiming at developing cost-efficient and energy-saving washing processes. In addition, lipolytic hydrolases display enantio- and regioselectivity making them highly applicable in the industrial production of pharmaceuticals and other pure compounds. We will review recent developments in the screening and recombinant production of lipolytic extremozymes, and highlight some of the industrial applications.


Cocoa Butter Lipolytic Enzyme Thermophilic Microorganism Cocoa Butter Equivalent Psychrophilic Microorganism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdou AM (2003) Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J Dairy Sci 86:127–132PubMedCrossRefGoogle Scholar
  2. Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM (2008) Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol 381:324–340PubMedCrossRefGoogle Scholar
  3. Al Khudary R, Venkatachalam R, Katzer M, Elleuche S, Antranikian G (2010) A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization. Extremophiles 14:273–285PubMedCrossRefGoogle Scholar
  4. Alquati C, De Gioia L, Santarossa G, Alberghina L, Fantucci P, Lotti M (2002) The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling. Eur J Biochem 269:3321–3328PubMedCrossRefGoogle Scholar
  5. Alqueres SM, Branco RV, Freire DM, Alves TL, Martins OB, Almeida RV (2011) Characterization of the recombinant thermostable lipase (Pf2001) from Pyrococcus furiosus: effects of thioredoxin fusion tag and triton X-100. Enzyme Res 2011:316939PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aoyama S, Yoshida N, Inouye S (1988) Cloning, sequencing and expression of the lipase gene from Pseudomonas fragi IFO-12049 in E. coli. FEBS Lett 242:36–40PubMedCrossRefGoogle Scholar
  7. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ay F, Karaoglu H, Inan K, Canakci S, Belduz AO (2011) Cloning, purification and characterization of a thermostable carboxylesterase from Anoxybacillus sp. PDF1. Protein Expr Purif 80:74–79PubMedCrossRefGoogle Scholar
  9. Bassegoda A, Cesarini S, Diaz P (2012a) Lipase improvement: goals and strategies. Comput Struct Biotechnol J 2, e201209005PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bassegoda A, Pastor FI, Diaz P (2012b) Rhodococcus sp. strain CR-53 LipR, the first member of a new bacterial lipase family (family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Appl Environ Microbiol 78:1724–1732PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bayer S, Kunert A, Ballschmiter M, Greiner-Stoeffele T (2010) Indication for a new lipolytic enzyme family: isolation and characterization of two esterases from a metagenomic library. J Mol Microbiol Biotechnol 18:181–187PubMedCrossRefGoogle Scholar
  12. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81PubMedCrossRefGoogle Scholar
  13. Brault G, Shareck F, Hurtubise Y, Lepine F, Doucet N (2012) Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3(2). PLoS ONE 7, e32041PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cai J, Xie Y, Song BK, Wang Y, Zhang Z, Feng Y (2011) Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V. Appl Microbiol Biotechnol 89:1463–1473PubMedCrossRefGoogle Scholar
  15. Chen CK, Lee GC, Ko TP, Guo RT, Huang LM, Liu HJ, Ho YF, Shaw JF, Wang AH (2009) Structure of the alkalohyperthermophilic Archaeoglobus fulgidus lipase contains a unique C-terminal domain essential for long-chain substrate binding. J Mol Biol 390:672–685PubMedCrossRefGoogle Scholar
  16. Choi GS, Kim JY, Kim JH, Ryu YW, Kim GJ (2003) Construction and characterization of a recombinant esterase with high activity and enantioselectivity to (S)-ketoprofen ethyl ester. Protein Expr Purif 29:85–93PubMedCrossRefGoogle Scholar
  17. Choi WC, Kim MH, Ro HS, Ryu SR, Oh TK, Lee JK (2005) Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability. FEBS Lett 579:3461–3466PubMedCrossRefGoogle Scholar
  18. Choi JE, Kwon MA, Na HY, Hahm DH, Song JK (2013) Isolation and characterization of a metagenome-derived thermoalkaliphilic esterase with high stability over a broad pH range. Extremophiles 17:1013–1021PubMedCrossRefGoogle Scholar
  19. Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491PubMedPubMedCentralGoogle Scholar
  20. Chow J, Kovacic F, Dall Antonia Y, Krauss U, Fersini F, Schmeisser C, Lauinger B, Bongen P, Pietruszka J, Schmidt M, Menyes I, Bornscheuer UT, Eckstein M, Thum O, Liese A, Mueller-Dieckmann J, Jaeger KE, Streit WR (2012) The metagenome-derived enzymes LipS and LipT increase the diversity of known lipases. PLoS ONE 7, e47665PubMedPubMedCentralCrossRefGoogle Scholar
  21. Couto GH, Glogauer A, Faoro H, Chubatsu LS, Souza EM, Pedrosa FO (2010) Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genet Mol Res 9:514–523PubMedCrossRefGoogle Scholar
  22. Cui Z, Wang Y, Pham BP, Ping F, Pan H, Cheong GW, Zhang S, Jia B (2012) High level expression and characterization of a thermostable lysophospholipase from Thermococcus kodakarensis KOD1. Extremophiles 16:619–625PubMedCrossRefGoogle Scholar
  23. de O. Carvalho P, Contesini FJ, Bizaco R, Calafatti SA, Macedo GA (2006) Optimization of enantioselective resolution of racemic ibuprofen by native lipase from Aspergillus niger. J Ind Microbiol Biotechnol 33:713–718PubMedCrossRefGoogle Scholar
  24. De Santi C, Tedesco P, Ambrosino L, Altermark B, Willassen NP, de Pascale D (2014) A new alkaliphilic cold-active esterase from the psychrophilic marine bacterium Rhodococcus sp.: functional and structural studies and biotechnological potential. Appl Biochem Biotechnol 172:3054–3068PubMedCrossRefGoogle Scholar
  25. Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Falvour Fragr J 28:71–83CrossRefGoogle Scholar
  26. Dlugolecka A, Cieslinski H, Bruzdziak P, Gottfried K, Turkiewicz M, Kur J (2009) Purification and biochemical characteristic of a cold-active recombinant esterase from Pseudoalteromonas sp. 643A under denaturing conditions. Pol J Microbiol 58:211–218PubMedGoogle Scholar
  27. Do H, Lee JH, Kwon MH, Song HE, An JY, Eom SH, Lee SG, Kim HJ (2013) Purification, characterization and preliminary X-ray diffraction analysis of a cold-active lipase (CpsLip) from the psychrophilic bacterium Colwellia psychrerythraea 34H. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:920–924PubMedPubMedCentralCrossRefGoogle Scholar
  28. du Plessis EM, Berger E, Stark T, Louw ME, Visser D (2010) Characterization of a novel thermostable esterase from Thermus scotoductus SA-01: evidence of a new family of lipolytic esterases. Curr Microbiol 60:248–253PubMedCrossRefGoogle Scholar
  29. Egorova K, Antranikian G (2005) Industrial relevance of thermophilic Archaea. Curr Opin Microbiol 8:649–655PubMedCrossRefGoogle Scholar
  30. Elend C, Schmeisser C, Hoebenreich H, Steele HL, Streit WR (2007) Isolation and characterization of a metagenome-derived and cold-active lipase with high stereospecificity for (R)-ibuprofen esters. J Biotechnol 130:370–377PubMedCrossRefGoogle Scholar
  31. Elleuche S (2015) Bringing functions together with fusion enzymes-from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol 99:1545–1556PubMedCrossRefGoogle Scholar
  32. Elleuche S, Piascheck H, Antranikian G (2011) Fusion of the OsmC domain from esterase EstO confers thermolability to the cold-active xylanase Xyn8 from Pseudoalteromonas arctica. Extremophiles 15:311–317PubMedCrossRefGoogle Scholar
  33. Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123PubMedCrossRefGoogle Scholar
  34. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208PubMedCrossRefGoogle Scholar
  35. Feller G, Thiry M, Arpigny JL, Gerday C (1991) Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 102:111–115PubMedCrossRefGoogle Scholar
  36. Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202CrossRefGoogle Scholar
  37. Fuciños P, Pastrana L, Sanroman A, Longo MA, Hermoso JA, Rua ML (2011) An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: purification, characterisation and structural modelling. J Mol Catal B Enzym 70:127–137CrossRefGoogle Scholar
  38. Fuciños P, Atanes E, Lopez-lopez O, Solaroli M, Cerdan ME, Gonzalez-Siso MI, Pastrana L, Rua ML (2014) Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochem 49:927–935CrossRefGoogle Scholar
  39. Gao R, Feng Y, Ishikawa K, Ishida H, Ando S, Kosugi Y, Cao S (2003) Cloning, purification and properties of a hyperthermophilic esterase from archaeon Aeropyrum pernix K1. J Mol Catal B Enzym 24–25:1–8CrossRefGoogle Scholar
  40. Gatti-Lafranconi P, Caldarazzo SM, Villa A, Alberghina L, Lotti M (2008) Unscrambling thermal stability and temperature adaptation in evolved variants of a cold-active lipase. FEBS Lett 582:2313–2318PubMedCrossRefGoogle Scholar
  41. Golyshina OV, Golyshin PN, Timmis KN, Ferrer M (2006) The ‘pH optimum anomaly’ of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 8:416–425PubMedCrossRefGoogle Scholar
  42. Gumerov VM, Mardanov AV, Kolosov PM, Ravin NV (2012) Isolation and functional characterization of lipase from the thermophilic alkali-tolerant bacterium Thermosyntropha lipolytica. Prikl Biokhim Mikrobiol 48:376–382PubMedGoogle Scholar
  43. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781PubMedCrossRefGoogle Scholar
  44. Hasan F, Shah AA, Hameed A (2005) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251CrossRefGoogle Scholar
  45. Henne A, Schmitz RA, Bomeke M, Gottschalk G, Daniel R (2000) Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl Environ Microbiol 66:3113–3116PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12:351–364PubMedCrossRefGoogle Scholar
  47. Hoesl MG, Acevedo-Rocha CG, Nehring S, Royter M, Wolschner C, Wiltschi B, Budisa N, Antranikian G (2011) Lipase congeners designed by genetic code engineering. Chemcatchem 3:213–221CrossRefGoogle Scholar
  48. Hotta Y, Ezaki S, Atomi H, Imanaka T (2002) Extremely stable and versatile carboxylesterase from a hyperthermophilic archaeon. Appl Environ Microbiol 68:3925–3931PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hu XP, Heath C, Taylor MP, Tuffin M, Cowan D (2012) A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles 16:79–86PubMedCrossRefGoogle Scholar
  50. Hwang HT, Qi F, Yuan C, Zhao X, Ramkrishna D, Liu D, Varma A (2014) Lipase-catalyzed process for biodiesel production: protein engineering and lipase production. Biotechnol Bioeng 111:639–653PubMedCrossRefGoogle Scholar
  51. Ikeda M, Clark DS (1998) Molecular cloning of extremely thermostable esterase gene from hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli. Biotechnol Bioeng 57:624–629PubMedCrossRefGoogle Scholar
  52. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403PubMedCrossRefGoogle Scholar
  53. Jeon JH, Kim JT, Kim YJ, Kim HK, Lee HS, Kang SG, Kim SJ, Lee JH (2009) Cloning and characterization of a new cold-active lipase from a deep-sea sediment metagenome. Appl Microbiol Biotechnol 81:865–874PubMedCrossRefGoogle Scholar
  54. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470PubMedCrossRefGoogle Scholar
  55. Joshi S, Satyanarayana T (2015) In vitro engineering of microbial enzymes with multifarious applications: prospects and perspectives. Bioresour Technol 176:273–283PubMedCrossRefGoogle Scholar
  56. Kamal MZ, Mohammad TA, Krishnamoorthy G, Rao NM (2012) Role of active site rigidity in activity: MD simulation and fluorescence study on a lipase mutant. PLoS One 7, e35188PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kamijo T, Saito A, Ema S, Yoh I, Hayashi H, Nagata R, Nagata Y, Ando A (2011) Molecular and enzymatic characterization of a subfamily I.4 lipase from an edible oil-degrader Bacillus sp. HH-01. Antonie Van Leeuwenhoek 99:179–187PubMedCrossRefGoogle Scholar
  58. Kawata T, Ogino H (2009) Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution. Biotechnol Prog 25:1605–1611PubMedGoogle Scholar
  59. Killens-Cade R, Turner R, MacInnes C, Grunden A (2014) Characterization of a thermostable, recombinant carboxylesterase from the hyperthermophilic archaeon Metallosphaera sedula DSM5348. Adv Enzym Res 2:1–13CrossRefGoogle Scholar
  60. Kim SB, Lee W, Ryu YW (2008) Cloning and characterization of thermostable esterase from Archaeoglobus fulgidus. J Microbiol 46:100–107PubMedCrossRefGoogle Scholar
  61. Koops BC, Papadimou E, Verheij HM, Slotboom AJ, Egmond MR (1999) Activity and stability of chemically modified Candida antarctica lipase B adsorbed on solid supports. Appl Microbiol Biotechnol 52:791–796PubMedCrossRefGoogle Scholar
  62. Lee D-W, Kim H-W, Lee K-W, Kim B-C, Choe E-A, Lee H-S, Kim D-S, Pyun Y-R (2001) Purification and characterization of two distinct thermostable lipases from the gram-positive thermophilic bacterium Bacillus thermoleovorans ID-1. Enzyme Microb Technol 29:363–371CrossRefGoogle Scholar
  63. Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A (2013) ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res 41:D423–D429PubMedCrossRefGoogle Scholar
  64. Leow TC, Rahman RN, Basri M, Salleh AB (2007) A thermoalkaliphilic lipase of Geobacillus sp. T1. Extremophiles 11:527–535PubMedCrossRefGoogle Scholar
  65. Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581PubMedPubMedCentralCrossRefGoogle Scholar
  66. Li X, Yu HY (2014) Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol (Praha) 59:455–463CrossRefGoogle Scholar
  67. Lopez G, Chow J, Bongen P, Lauinger B, Pietruszka J, Streit WR, Baena S (2014) A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes. Appl Microbiol Biotechnol 98:8603–8616PubMedCrossRefGoogle Scholar
  68. Luo Y, Zheng Y, Jiang Z, Ma Y, Wei D (2006) A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification. Appl Microbiol Biotechnol 73:349–355PubMedCrossRefGoogle Scholar
  69. Marquardt T, von der Heyde A, Elleuche S (2014) Design and establishment of a vector system that enables production of multifusion proteins and easy purification by a two-step affinity chromatography approach. J Microbiol Methods 105:47–50PubMedCrossRefGoogle Scholar
  70. Merkel L, Schauer M, Antranikian G, Budisa N (2010) Parallel incorporation of different fluorinated amino acids: on the way to “teflon” proteins. Chembiochem 11:1505–1507PubMedCrossRefGoogle Scholar
  71. Morana A, Di Prizito N, Aurilia V, Rossi M, Cannio R (2002) A carboxylesterase from the hyperthermophilic archaeon Sulfolobus solfataricus: cloning of the gene, characterization of the protein. Gene 283:107–115PubMedCrossRefGoogle Scholar
  72. Mozhaev VV (1993) Mechanism-based strategies for protein thermostabilization. Trends Biotechnol 11:88–95PubMedCrossRefGoogle Scholar
  73. Nacke H, Will C, Herzog S, Nowka B, Engelhaupt M, Daniel R (2011) Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiol Ecol 78:188–201PubMedCrossRefGoogle Scholar
  74. Ogino H, Katou Y, Akagi R, Mimitsuka T, Hiroshima S, Gemba Y, Doukyu N, Yasuda M, Ishimi K, Ishikawa H (2007) Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles 11:809–817PubMedCrossRefGoogle Scholar
  75. Park YJ, Choi SY, Lee HB (2006) A carboxylesterase from the thermoacidophilic archaeon Sulfolobus solfataricus P1; purification, characterization, and expression. Biochim Biophys Acta 1760:820–828PubMedCrossRefGoogle Scholar
  76. Parra LP, Espina G, Devia J, Salazar O, Andrews B, Asenjo JA (2015) Identification of lipase encoding genes from Antarctic seawater bacteria using degenerate primers: expression of a cold-active lipase with high specific activity. Enzyme Microb Technol 68:56–61PubMedCrossRefGoogle Scholar
  77. Patkar S, Vind J, Kelstrup E, Christensen MW, Svendsen A, Borch K, Kirk O (1998) Effect of mutations in Candida antarctica B lipase. Chem Phys Lipids 93:95–101PubMedCrossRefGoogle Scholar
  78. Rao L, Xue Y, Zhou C, Tao J, Li G, Lu JR, Ma Y (2011) A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes. Biochim Biophys Acta 1814:1695–1702PubMedCrossRefGoogle Scholar
  79. Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T (2001) Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67:4064–4069PubMedPubMedCentralCrossRefGoogle Scholar
  80. Roh C, Villatte F (2008) Isolation of a low-temperature adapted lipolytic enzyme from uncultivated microorganism. J Appl Microbiol 105:116–123PubMedCrossRefGoogle Scholar
  81. Royter M, Schmidt M, Elend C, Hobenreich H, Schafer T, Bornscheuer UT, Antranikian G (2009) Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles 13:769–783PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rusnak M, Nieveler J, Schmid RD, Petri R (2005) The putative lipase, AF1763, from Archaeoglobus fulgidusis is a carboxylesterase with a very high pH optimum. Biotechnol Lett 27:743–748PubMedCrossRefGoogle Scholar
  83. Ryu HS, Kim HK, Choi WC, Kim MH, Park SY, Han NS, Oh TK, Lee JK (2006) New cold-adapted lipase from Photobacterium lipolyticum sp. nov. that is closely related to filamentous fungal lipases. Appl Microbiol Biotechnol 70:321–326PubMedCrossRefGoogle Scholar
  84. Salameh MA, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73:7725–7731PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shao H, Xu L, Yan Y (2013) Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol 40:1211–1222PubMedCrossRefGoogle Scholar
  86. Shao H, Xu L, Yan Y (2014) Biochemical characterization of a carboxylesterase from the archaeon Pyrobaculum sp. 1860 and a rational explanation of its substrate specificity and thermostability. Int J Mol Sci 15:16885–16910PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sharma R, Sona SK, Vohra RM, Gupta LK, Gupta JK (2002) Purification and characterisation of a thermostable alkaline lipase from a new thermophilic Bacillus sp. RSJ-1. Process Biochem 37:1075–1084CrossRefGoogle Scholar
  88. Sharma PK, Kumar R, Garg P, Kaur J (2014) Insights into controlling role of substitution mutation, E315G on thermostability of a lipase cloned from metagenome of hot spring soil. 3 Biotech 4:189–196CrossRefGoogle Scholar
  89. Shaw E, McCue LA, Lawrence CE, Dordick JS (2002) Identification of a novel class in the alpha/beta hydrolase fold superfamily: the N-myc differentiation-related proteins. Proteins 47:163–168PubMedCrossRefGoogle Scholar
  90. Siew N, Saini HK, Fischer D (2005) A putative novel alpha/beta hydrolase ORFan family in Bacillus. FEBS Lett 579:3175–3182PubMedCrossRefGoogle Scholar
  91. Soliman NA, Knoll M, Abdel-Fattah YR, Schmid RD, Lange S (2007) Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt. Process Biochem 42:1090–1100CrossRefGoogle Scholar
  92. Tan S, Owusu Apenten RK, Knapp J (1996) Low temperature organic phase biocatalysis using cold-adapted lipase from psychrotrophic Pseudomonas P38. Food Chem 57:415–418CrossRefGoogle Scholar
  93. Tanaka D, Yoneda S, Yamashiro Y, Sakatoku A, Kayashima T, Yamakawa K, Nakamura S (2012) Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl Biochem Biotechnol 168:327–338PubMedCrossRefGoogle Scholar
  94. Tao W, Shengxue F, Duobin M, Xuan Y, Congcong D, Xihua W (2013) Characterization of a new thermophilic and acid tolerant esterase from Thermotoga maritima capable of hydrolytic resolution of racemic ketoprofen ethyl ester. J Mol Catal B Enzym 85–86:23–30CrossRefGoogle Scholar
  95. Tchigvintsev A, Tran H, Popovic A, Kovacic F, Brown G, Flick R, Hajighasemi M, Egorova O, Somody JC, Tchigvintsev D, Khusnutdinova A, Chernikova TN, Golyshina OV, Yakimov MM, Savchenko A, Golyshin PN, Jaeger KE, Yakunin AF (2015) The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes. Appl Microbiol Biotechnol 99:2165–2178PubMedCrossRefGoogle Scholar
  96. Trincone A (2011) Marine biocatalysts: enzymatic features and applications. Mar Drugs 9:478–499PubMedPubMedCentralCrossRefGoogle Scholar
  97. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43PubMedPubMedCentralCrossRefGoogle Scholar
  98. Wahab RA, Basri M, Rahman RNZRA, Salleh AB, Rahman MBA, Chaibakhsh N, Leow TC (2014) Enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus zalihae. Biotechnol Biotechnol Equip 28:1065–1072PubMedPubMedCentralCrossRefGoogle Scholar
  99. Wi AR, Jeon SJ, Kim S, Park HJ, Kim D, Han SJ, Yim JH, Kim HW (2014) Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus. Biotechnol Lett 36:1295–1302PubMedCrossRefGoogle Scholar
  100. Wicka M, Krajewska E, Pawlak A (2013) Cold-adapted bacterial lipolytic enzymes and their applications. PhD Interdisp J 2:107–112Google Scholar
  101. Wu G, Wu G, Zhan T, Shao Z, Liu Z (2013) Characterization of a cold-adapted and salt-tolerant esterase from a psychrotrophic bacterium Psychrobacter pacificensis. Extremophiles 17:809–819PubMedCrossRefGoogle Scholar
  102. Yamashiro Y, Sakatoku A, Tanaka D, Nakamura S (2013) A cold-adapted and organic solvent-tolerant lipase from a psychrotrophic bacterium Pseudomonas sp. strain YY31: identification, cloning, and characterization. Appl Biochem Biotechnol 171:989–1000PubMedCrossRefGoogle Scholar
  103. Zhang JW, Zeng RY (2008) Molecular cloning and expression of a cold-adapted lipase gene from an Antarctic deep sea psychrotrophic bacterium Pseudomonas sp. 7323. Mar Biotechnol 10:612–621PubMedCrossRefGoogle Scholar
  104. Zhang J, Lin S, Zeng R (2007) Cloning, expression, and characterization of a cold-adapted lipase gene from an antarctic deep-sea psychrotrophic bacterium, Psychrobacter sp 7195. J Microbiol Biotechnol 17:604–610PubMedGoogle Scholar
  105. Zhang XY, Fan X, Qiu YJ, Li CY, Xing S, Zheng YT, Xu JH (2014) Newly identified thermostable esterase from Sulfobacillus acidophilus: properties and performance in phthalate ester degradation. Appl Environ Microbiol 80:6870–6878PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhu Y, Li H, Ni H, Xiao A, Li L, Cai H (2015) Molecular cloning and characterization of a thermostable lipase from deep-sea thermophile Geobacillus sp. EPT9. World J Microbiol Biotechnol 31:295–306PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Skander Elleuche
    • 1
  • Carola Schröder
    • 1
  • Garabed Antranikian
    • 1
  1. 1.Institute of Technical MicrobiologyHamburg University of Technology (TUHH)HamburgGermany

Personalised recommendations