Querying and Display of Information: Symbiosis in Exploratory Search Interaction Scenarios

  • Barış Serim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8820)


This paper examines potential interaction aspects related to querying and the display of information in exploratory search scenarios with a particular focus on user state and interactive visualization. Exploratory search refers to a specific type of information seeking that is open-ended, continuous and evolving. The evolving nature of exploratory search also provides the computer with sequential data that can be used to estimate user state and intention as the search unfolds. In this setting, the system supports querying by relying on user’s pointing actions, sequential organization of user interaction and query metadata. The system also adapts the display of information by determining the timing and visual representation. The paper illustrates potential interactions that employ new input modalities such as eye gaze and physiological signals. The paper concludes by discussing the possible functions of interactive visualization regarding querying and the display of information.


Interaction design Physiological input Gaze input Interactive visualization Search context Exploratory search 



This work has been partly supported by MindSee (FP7 – ICT; Grant Agreement # 611570).


  1. 1.
    Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46 (2006)CrossRefGoogle Scholar
  2. 2.
    White, R.W., Roth, R.A.: Exploratory search: beyond the query-response paradigm. In: Synthesis Lectures on Information Concepts, Retrieval, and Services. Morgan & Claypool (2009)Google Scholar
  3. 3.
    Barral O., Jacucci G.: Applying physiological computing methods to study psychological, affective and motivational relevance. In: Proceedings of Symbiotic’14. Springer Berlin Heidelberg (2014)Google Scholar
  4. 4.
    Jacucci, G., Spagnolli, A., Freeman, J., Gamberini, L.: Symbiotic interaction: a critical definition and comparison to other human-computer paradigms. In: Proceedings of Symbiotic’14. Springer Berlin Heidelberg (2014)Google Scholar
  5. 5.
    Ruotsalo, T., Peltonen, J., Eugster, M., Głowacka, D., Konyushkova, K., Athukorala, K., Jacucci, G., Kaski, S.: Directing exploratory search with interactive intent modeling. In: Proceedings of CIKM’13, 1759-1764. ACM Press, New York (2013)Google Scholar
  6. 6.
    Chau, D.H., Kittur, A., Hong, J.I., Faloutsos, C.: Apolo: making sense of large network data by combining rich user interaction and machine learning. In: Proceedings of CHI’13, pp. 167–176. ACM Press, New York (2013)Google Scholar
  7. 7.
    Heer, J., Agrawala, M., Willett, W.: Generalized selection via interactive query relaxation. In: Proceedings of CHI’08, pp. 959–968. ACM Press, New York (2008)Google Scholar
  8. 8.
    Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. In: ACM SIGIR Forum, vol. 37, issue 2, pp. 18–28. ACM Press, New York (2003)Google Scholar
  9. 9.
    Maglio, P.P., Barrett, R., Campbell, C.S., Selker, T.: SUITOR: An attentive information system. In: Proceedings of IUI’00, pp. 169–176. ACM Press, New York (2000)Google Scholar
  10. 10.
    Tannen, D.: Conversational style. Ablex, Norwood (1984)Google Scholar
  11. 11.
    Weir, D., Pohl, H., Rogers, S., Vertanen, K., Kristensson, P.O.: Uncertain text entry on mobile devices. In: Proceedings of CHI’14, pp. 2307–2316. ACM Press, New York (2014)Google Scholar
  12. 12.
    Nielsen, J.: Noncommand user interfaces. Commun. ACM 36(4), 83–99 (1993). ACM Press, New YorkCrossRefGoogle Scholar
  13. 13.
    Horvitz, E.: Principles of mixed-initiative user interfaces. In: Proceedings of CHI’99, pp. 159–166. ACM Press, New York (1999)Google Scholar
  14. 14.
    McCrickard, D.S., Chewar, C.M.: Attuning notification design to user goals and attention costs. Commun. ACM 46(3), 67–72 (2003). ACM Press, New YorkCrossRefGoogle Scholar
  15. 15.
    Rhodes, B.J., Maes, P.: Just-in-time information retrieval agents. IBM Syst. J. 39(4), 685–704 (2000)CrossRefGoogle Scholar
  16. 16.
    Allen, J.E., Guinn, C.I., Horvitz, E.: Mixed-initiative interaction. IEEE Intell. Syst. Appl. 14(5), 14–23 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Helsinki Institute for Information Technology HIIT, Department of Computer ScienceUniversity of HelsinkiHelsinkiFinland

Personalised recommendations