Applying Physiological Computing Methods to Study Psychological, Affective and Motivational Relevance

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8820)

Abstract

Relevance in information science has been studied for over forty years and robust frameworks have been derived. However, information retrieval systems are still using mainly objective, algorithmic measures of relevance. The aim of the present paper is to raise a discussion around the possibility that bring state-of-the-art physiological computing methods to model subjective components of relevance. We center the discussion on the relevance types known in the information science literature as psychological, affective and motivational relevance. The paper presents a definition of these concepts, as well as an overview of the recent advances in physiological computing methods developed in information science and information retrieval. We conclude with a discussion around the potential of physiological computing methods to model psychological, affective or motivational relevance.

Keywords

Physiological computing Affective relevance Psychological relevance Information retrieval 

References

  1. 1.
    Schamber, L.: Relevance and information behavior. Ann. Rev. Inf. Sci. Technol. (ARIST) 29, 3–48 (1994)Google Scholar
  2. 2.
    Jacucci, G., Spagnolli, A., Freeman, J., Gamberini, L.: Symbiotic interaction: a critical definition and comparison to other human-computer paradigms. In: Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 3–20. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Saracevic, T.: Relevance: a review of and a framework for the thinking on the notion in information science. J. Am. Soc. Inform. Sci. 26(6), 321–343 (1975)CrossRefGoogle Scholar
  4. 4.
    Saracevic, T.: Relevance reconsidered. In: Proceedings of the Second Conference on Conceptions of Library and Information Science (CoLIS 2), pp. 201–218. ACM Press (1996)Google Scholar
  5. 5.
    Saracevic, T.: The stratified model of information retrieval interaction: extension and applications. In: Proceedings of the Annual Meeting-American Society for Information Science. vol. 34, pp. 313–327. Learned Information (Europe) LTD (1997)Google Scholar
  6. 6.
    Saracevic, T.: Relevance: a review of the literature and a framework for thinking on the notion in information science. Part II: Nature and manifestations of relevance. J. Am. Soc. Inform. Sci. Technol. 58(13), 1915–1933 (2007)CrossRefGoogle Scholar
  7. 7.
    Saracevic, T.: Relevance: a review of the literature and a framework for thinking on the notion in information science. Part III: Behavior and effects of relevance. J. Am. Soc. Inform. Sci. Technol. 58(13), 2126–2144 (2007)CrossRefGoogle Scholar
  8. 8.
    Mizzaro, S.: Relevance: the whole history. J. Am. Soc. Inform. Sci. 48(9), 810–832 (1997)CrossRefGoogle Scholar
  9. 9.
    Mizzaro, S.: How many relevances in information retrieval? Interact. Comput. 10(3), 303–320 (1998)CrossRefGoogle Scholar
  10. 10.
    Ingwersen, P.: Cognitive perspectives of information retrieval interaction: elements of a cognitive ir theory. J. Doc. 52(1), 3–50 (1996)CrossRefGoogle Scholar
  11. 11.
    Cosijn, E., Ingwersen, P.: Dimensions of relevance. Inf. Process. Manage. 36(4), 533–550 (2000)CrossRefGoogle Scholar
  12. 12.
    Borlund, P.: The concept of relevance in IR. J. Am. Soc. Inform. Sci. Technol. 54(10), 913–925 (2003)CrossRefGoogle Scholar
  13. 13.
    Borlund, P., Ingwersen, P.: Measures of relative relevance and ranked half-life: performance indicators for interactive IR. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 324–331. ACM (1998)Google Scholar
  14. 14.
    Sperber, D., Wilson, D.: Relevance: Communication and Cognition. Harvard University Press, Cambridge (1986)Google Scholar
  15. 15.
    Harter, S.P.: Psychological relevance and information science. J. Am. Soc. Inf. Sci. 43(9), 602–615 (1992)CrossRefGoogle Scholar
  16. 16.
    Schutz, A., Zaner, R.: Reflections on the Problem of Relevance. Greenwood Press, Westport (1970)Google Scholar
  17. 17.
    Barry, C.L.: User-defined relevance criteria: an exploratory study. JASIS 45(3), 149–159 (1994)CrossRefGoogle Scholar
  18. 18.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1175–1191 (2001)CrossRefGoogle Scholar
  19. 19.
    Allanson, J., Wilson, G.M.: Physiological computing. In: CHI’02 Extended Abstracts on Human Factors in Computing Systems, pp. 912–913. ACM (2002)Google Scholar
  20. 20.
    Allanson, J., Fairclough, S.H.: A research agenda for physiological computing. Interact. Comput. 16(5), 857–878 (2004)CrossRefGoogle Scholar
  21. 21.
    Fairclough, S.H.: Fundamentals of physiological computing. Interact. Comput. 21(1), 133–145 (2009)CrossRefGoogle Scholar
  22. 22.
    Fairclough, S.H., Gilleade, K.: Advances in Physiological Computing. Springer, London (2014)CrossRefGoogle Scholar
  23. 23.
    Cacioppo, J.T., Tassinary, L.G., Berntson, G.G., et al.: Handbook of Psychophysiology, vol. 2. Cambridge University Press, New York (2007)CrossRefGoogle Scholar
  24. 24.
    Negri, P., Gamberini, L., Cutini, S.: A review of researches on subliminal techniques for implicit interaction in symbiotic systems. In: Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 47–60. Springer, Heidelberg (2014)Google Scholar
  25. 25.
    Barral, O., Aranyi, G., Kouider, S., Lindsay, A., Prins, H., Ahmed, I., Jacucci, G., Negri, P., Gamberini, L., Pizzi, D., Cavazza, M.: Covert persuasive technologies: bringing subliminal cues to Human-Computer interaction. In: Spagnolli, A., Chittaro, L., Gamberini, L. (eds.) PERSUASIVE 2014. LNCS, vol. 8462, pp. 1–12. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Müller, K.R., Kübler, A.: An introduction to brain-computer. In: Dornhege, G., Millan, J.R., Hinterberger, T., McFarland, D.J., Muller, K.R. (eds.) Toward Brain Computer Interfacing, pp. 1–25. Massachusetts Institute of Technology Press, Cambridge (2007)Google Scholar
  27. 27.
    Fairclough, S.H., Ewing, K.C., Roberts, J.: Measuring task engagement as an input to physiological computing. In: 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, 2009, ACII 2009, pp. 1–9. IEEE (2009)Google Scholar
  28. 28.
    Gevins, A., Smith, M.E.: Neurophysiological measures of cognitive workload during human-computer interaction. Theor. Issues Ergonomics Sci. 4(1–2), 113–131 (2003)CrossRefGoogle Scholar
  29. 29.
    Lorist, M.M., Bezdan, E., ten Caat, M., Span, M.M., Roerdink, J.B., Maurits, N.M.: The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study. Brain Res. 1270, 95–106 (2009)CrossRefGoogle Scholar
  30. 30.
    Eugster, M.J., Ruotsalo, T., Spapé, M.M., Kosunen, I., Barral, O., Ravaja, N., Jacucci, G., Kaski, S.: Predicting term-relevance from brain signals. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’14, pp. 425–434. ACM, New York (2014)Google Scholar
  31. 31.
    Dodge, R., Cline, T.S.: The angle velocity of eye movements. Psychol. Rev. 8(2), 145 (1901)CrossRefGoogle Scholar
  32. 32.
    Duchowski, A.: Eye Tracking Methodology: Theory and Practice, vol. 373. Springer, London (2007)Google Scholar
  33. 33.
    Buscher, G., Dengel, A., van Elst, L.: Eye movements as implicit relevance feedback. In: CHI’08 Extended Abstracts on Human Factors in Computing Systems, pp. 2991–2996. ACM (2008)Google Scholar
  34. 34.
    Buscher, G., Dengel, A., van Elst, L.: Query expansion using gaze-based feedback on the subdocument level. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 387–394. ACM (2008)Google Scholar
  35. 35.
    Buscher, G., Cutrell, E., Morris, M.R.: What do you see when you’re surfing?: using eye tracking to predict salient regions of web pages. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 21–30. ACM (2009)Google Scholar
  36. 36.
    Buscher, G., Dengel, A., Biedert, R., Elst, L.V.: Attentive documents: eye tracking as implicit feedback for information retrieval and beyond. ACM Trans. Interact. Intell. Syst. (TiiS) 1(2), 9 (2012)Google Scholar
  37. 37.
    Ajanki, A., Hardoon, D.R., Kaski, S., Puolamäki, K., Shawe-Taylor, J.: Can eyes reveal interest? implicit queries from gaze patterns. User Model. User-Adap. Inter. 19(4), 307–339 (2009)CrossRefGoogle Scholar
  38. 38.
    Salojärvi, J., Puolamäki, K., Simola, J., Kovanen, L., Kojo, I., Kaski, S.: Inferring relevance from eye movements: feature extraction (2005)Google Scholar
  39. 39.
    Loboda, T.D., Brusilovsky, P., Brunstein, J.: Inferring word relevance from eye-movements of readers. In: Proceedings of the 16th International Conference on Intelligent User Interfaces, pp. 175–184. ACM (2011)Google Scholar
  40. 40.
    Puolamäki, K., Salojärvi, J., Savia, E., Simola, J., Kaski, S.: Combining eye movements and collaborative filtering for proactive information retrieval. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 146–153. ACM (2005)Google Scholar
  41. 41.
    Moe, K.K., Jensen, J.M., Larsen, B.: A qualitative look at eye-tracking for implicit relevance feedback. In: Proceedings of the Workshop on Context-Based Information Retrieval, vol. 326, pp. 36–47. Citeseer (2007)Google Scholar
  42. 42.
    Goldberg, J.H., Wichansky, A.M.: Eye tracking in usability evaluation: a practitioner’s guide. In: Hyona, J., Radach, R., Deubel, H. (eds.) The Mind’s Eye: Cognitive and Applied Aspects of Eye Movement Research, pp. 573–605. Elsevier, Amsterdam (2003)Google Scholar
  43. 43.
    Oliveira, F.T., Aula, A., Russell, D.M.: Discriminating the relevance of web search results with measures of pupil size. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2209–2212. ACM (2009)Google Scholar
  44. 44.
    Barral, O., Kosunen, I., Jacucci, G.: Influence of reading speed on pupil size as a measure of perceived relevance. In: Proceedings of the Joint Workshop on Personalized Information Access (PIA 2014), in Conjunction with the 22nd Conference on User Modeling, Adaptation and Personalization (UMAP 2014)Google Scholar
  45. 45.
    Kapoor, A., Burleson, W., Picard, R.W.: Automatic prediction of frustration. Int. J. Hum. Comput. Stud. 65(8), 724–736 (2007)CrossRefGoogle Scholar
  46. 46.
    Kataoka, H., Kano, H., Yoshida, H., Saijo, A., Yasuda, M., Osumi, M.: Development of a skin temperature measuring system for non-contact stress evaluation. In: Engineering in Medicine and Biology Society, 1998, Proceedings of the 20th Annual International Conference of the IEEE, vol. 2, pp. 940–943. IEEE (1998)Google Scholar
  47. 47.
    Wilson, G.M., Sasse, M.A.: Listen to your heart rate: counting the cost of media quality. In: Paiva, A.C.R. (ed.) IWAI 1999. LNCS, vol. 1814, pp. 9–20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  48. 48.
    Partala, T.: Affective Information in Human-Computer Interaction. Tampereen Yliopisto, Tampere (2005)Google Scholar
  49. 49.
    Gilroy, S., Porteous, J., Charles, F., Cavazza, M.: Exploring passive user interaction for adaptive narratives. In: Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces, pp. 119–128. ACM (2012)Google Scholar
  50. 50.
    Boucsein, W.: Electrodermal Activity. Springer, New York (2012)CrossRefGoogle Scholar
  51. 51.
    Arapakis, I., Jose, J.M., Gray, P.D.: Affective feedback: an investigation into the role of emotions in the information seeking process. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 395–402. ACM (2008)Google Scholar
  52. 52.
    Arapakis, I., Konstas, I., Jose, J.M.: Using facial expressions and peripheral physiological signals as implicit indicators of topical relevance. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 461–470. ACM (2009)Google Scholar
  53. 53.
    Arapakis, I., Athanasakos, K., Jose, J.M.: A comparison of general vs personalised affective models for the prediction of topical relevance. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 371–378. ACM (2010)Google Scholar
  54. 54.
    Lopatovska, I., Arapakis, I.: Theories, methods and current research on emotions in library and information science, information retrieval and human-computer interaction. Inf. Process. Manage. 47(4), 575–592 (2011)CrossRefGoogle Scholar
  55. 55.
    Arapakis, I., Moshfeghi, Y., Joho, H., Ren, R., Hannah, D., Jose, J.M.: Enriching user profiling with affective features for the improvement of a multimodal recommender system. In: Proceedings of the ACM International Conference on Image and Video Retrieval, p. 29. ACM (2009)Google Scholar
  56. 56.
    Spagnolli, A., Guardigli, E., Orso, V., Varotto, A., Gamberini, L.: Measuring user acceptance of wearable symbiotic devices: validation study across application scenarios. In: Jacucci, G., Gamberini, L., Freeman, J., Spagnolli, A. (eds.) Symbiotic 2014. LNCS, vol. 8820, pp. 87–98. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer Science, Helsinki Institute for Information Technology HIITUniversity of HelsinkiHelsinkiFinland

Personalised recommendations