Advertisement

A Multi-capacity Queuing Mechanism in Multi-dimensional Resource Scheduling

  • Mehdi Sheikhalishahi
  • Richard M. Wallace
  • Lucio Grandinetti
  • José Luis Vazquez-Poletti
  • Francesca Guerriero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8907)

Abstract

With the advent of new computing technologies, such as cloud computing and contemporary parallel processing systems, the building blocks of computing systems have become multi-dimensional. Traditional scheduling algorithms based on a single-resource optimization like processor fail to provide near optimal solutions. The efficient use of new computing systems depends on the efficient use of all resource dimensions. Thus, the scheduling algorithms have to fully use all resources. In this paper, we propose a queuing mechanism based on a multi-resource scheduling technique. For that, we model multi-resource scheduling as a multi-capacity bin-packing scheduling algorithm at the queue level to reorder the queue in order to improve the packing and as a result improve scheduling metrics. The experimental results demonstrate performance improvements in terms of waittime and slowdown metrics.

Keywords

Multi-resource Queuing mechanism Resource management Scheduling Bin-packing Performance 

Notes

Acknowledgement

We gratefully acknowledge Carlo Mastroianni from the Italian National Research Council, and Tapasya Patki from University of Arizona for reviewing this paper. This work was partially performed under the auspices of the Spanish National Plan for Research, Development and Innovation under Contract TIN2012-31518 (ServiceCloud).

References

  1. 1.
    Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28(5), 755–768 (2012)CrossRefGoogle Scholar
  2. 2.
    Bobroff, N., Kochut, A., Beaty, K.: Dynamic placement of virtual machines for managing SLA violations. In: 10th IFIP/IEEE International Symposium on Integrated Network Management, (IM 2007), pp. 119–128 (2007)Google Scholar
  3. 3.
    Cardosa, M., Korupolu, M.R., Singh, A.: Shares and utilities based power consolidation in virtualized server environments. In: Proceedings of the 11th IFIP/IEEE Integrated Network Management (IM 2009), Long Island, NY, USA, June 2009Google Scholar
  4. 4.
    Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., Gautam, N.: Managing server energy and operational costs in hosting centers. SIGMETRICS Perform. Eval. Rev. 33(1), 303–314 (2005)CrossRefGoogle Scholar
  5. 5.
    Coffman, E.G., Garey, M.R., Johnson, D.S.: An application of bin-packing to multiprocessor scheduling. SIAM J. Comput. 7(1), 1–17 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Coffman, E.G., Garey, M.R., Johnson, D.S.: Dynamic bin packing. SIAM J. Comput. 12(2), 227–258 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dhyani, K., Gualandi, S., Cremonesi, P.: A constraint programming approach for the service consolidation problem. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 97–101. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, p. 1. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Ferreto, T., Netto, M., Calheiros, R., De Rose, C.: Server consolidation with migration control for virtualized data centers. Future Gener. Comp. Syst. 27(8), 1027–1034 (2011)CrossRefGoogle Scholar
  10. 10.
    Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource constraints. SIAM J. Comput. 4(2), 187–200 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Garey, M.R., Graham, R.L., Johnson, D.S.: Resource constrained scheduling as generalized bin packing. J. Comb. Theory Ser. A 21(3), 257–298 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Graubner, P., Schmidt, M., Freisleben, B.: Energy-efficient virtual machine consolidation. IT Prof. 15(2), 28–34 (2013)CrossRefGoogle Scholar
  13. 13.
    Gulati, A., Holler, A., Ji, M., Shanmuganathan, G., Waldspurger, C., Zhu, X.: VMware distributed resource management: design, implementation, and lessons learned. VMware Techn. J. (2012). https://labs.vmware.com/vmtj/vmware-distributed-resource-management-design-implementation-and-lessons-learned
  14. 14.
    Hermenier, F., Lorca, X., Menaud, J.-M., Muller, G., Lawall, J.: Entropy: a consolidation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE 2009), pp. 41–50. ACM, New York (2009)Google Scholar
  15. 15.
    Leinberger, W., Karypis, G., Kumar, V.: Multi-capacity bin packing algorithms with applications to job scheduling under multiple constraints. In: Proceedings of the International Conference on Parallel Processing 1999, pp. 404–412 (1999)Google Scholar
  16. 16.
    Mastroianni, C., Meo, M., Papuzzo, G.: Probabilistic consolidation of virtual machines in self-organizing cloud data centers. IEEE Trans. Cloud Comput. 1(2), 215–228 (2013)CrossRefGoogle Scholar
  17. 17.
    Mazzucco, M., Dyachuk, D., Deters, R.: Maximizing cloud providers’ revenues via energy aware allocation policies. In: 10th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2010), Melbourne, Australia, pp. 131–138, May 2010Google Scholar
  18. 18.
    Mehta, S., Neogi, A.: ReCon: a tool to recommend dynamic server consolidation in multi-cluster data centers. In: Proceedings of the Network Operations and Management Symposium, IEEE NOMS 2008, pp. 363–370 (2008)Google Scholar
  19. 19.
    Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin packing (2011). http://research.microsoft.com
  20. 20.
    Quan, D.M., Basmadjian, R., de Meer, H., Lent, R., Mahmoodi, T., Sannelli, D., Mezza, F., Telesca, L., Dupont, C.: Energy efficient resource allocation strategy for cloud data centres. In: 26th International Symposium on Computer and Information Sciences (ISCIS 2011), London, UK, pp. 133–141, September 2011Google Scholar
  21. 21.
    Schröder, K., Nebel, W.: Behavioral model for cloud aware load and power management. In: Proceedings of HotTopiCS ’13, 2013 International Workshop on Hot Topics in Cloud Services (HotTopiCS ’13), pp. 19–26. ACM, New York, May 2013.Google Scholar
  22. 22.
    Stillwell, M., Schanzenbach, D., Vivien, F., Casanova, H.: Resource allocation algorithms for virtualized service hosting platforms. J. Parallel Distrib. Comput. 70, 962–974 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Stillwell, M., Vivien, F., Casanova, H.: Dynamic fractional resource scheduling vs. batch scheduling. IEEE Trans. Parallel Distrib. Syst. 23(3), 521–529 (2012). doi: 10.1109/TPDS.2011.183 CrossRefGoogle Scholar
  24. 24.
    Verma, A., Ahuja, P., Neogi, A.: pMapper: power and migration cost aware application placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Wu, Y.-L., Wenqi, H., Lau, S.-C., Wong, C.K., Young, G.H.: An effective quasi-human based heuristic for solving the rectangle packing problem. Eur. J. Oper. Res. 141(2), 341–358 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mehdi Sheikhalishahi
    • 1
  • Richard M. Wallace
    • 2
  • Lucio Grandinetti
    • 1
  • José Luis Vazquez-Poletti
    • 2
  • Francesca Guerriero
    • 1
  1. 1.Department of Electronics, Computer Sciences and SystemsUniversity of CalabriaRendeItaly
  2. 2.Department of Computer Architecture and AutomationComplutense UniversityMadridSpain

Personalised recommendations