Fan Search for Image Copy-Move Forgery Detection

  • Sondos M. Fadl
  • Noura A. Semary
  • Mohiy M. Hadhoud
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 488)


Image forgery detection is currently one of the interested research fields of image processing. Copy-Move (CM) forgery is one of the most commonly techniques. In this paper, we propose an efficient methodology for fast CM forgery detection. The proposed method accelerates blocking matching strategy. Firstly, the image is divided into fixed-size overlapping blocks then Discrete Cosine Transform (DCT) is applied to each block to represent its features, which are used to indirectly compare the blocks. After sorting the blocks based on DCT coefficients, a distance is measured between nearby blocks to denote their similarity. The proposed Fan Search (FS) algorithm starts once a duplicated block is detected. Instead of exhaustive search for all blocks, the nearby blocks of the detected block are examined first in a spiral order. The experimental results demonstrate that the proposed method can detect the duplicated regions efficiently, and reduce processing time up to 75% less than other previous works.


Image tampering Copy-move forgery Image fakery detection Image falsification detection Blind image forensics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khana, A., Malika, S.A., Alib, A., Chamlawia, R., Hussaina, M., Mahmoodc, M.T., Usmand, I.: Intelligent reversible watermarking and authentication: hiding depth map information for 3D cameras. Information Sciences 216, 155–175 (2012)CrossRefGoogle Scholar
  2. 2.
    Hsiao, J., Chen, C., Chien, L., Chen, M.: A new approach to image copy detection based on extended feature sets. IEEE Transactions on Image Processing 16(8), 2069–2079 (2007)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ling, H., Cheng, H., Ma, Q., Zou, F., Yan, W.: Efficient image copy detection using multiscale fingerprints. IEEE Magazine of Multimedia 19(1), 60–69 (2012)CrossRefGoogle Scholar
  4. 4.
    Nikolopoulos, S., Zafeiriou, S., Nikolaidis, N., Pitas, I.: Image replica detection system utilizing R-trees and linear discriminant analysis. Pattern Recognition 43(3), 636–649 (2010)CrossRefMATHGoogle Scholar
  5. 5.
    Huang, Y., Lu, W., Sun, W., Long, D.: Improved DCT-based detection of copy-move forgery in images. Forensic Science International 206(1), 178–184 (2011)CrossRefGoogle Scholar
  6. 6.
    Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting duplicated image regions. Dept. Comput. Sci., Dartmouth College, Tech. Rep. TR2004-515 (2004)Google Scholar
  7. 7.
    Lin, H., Wang, C., Kao, Y.: Fast copy-move forgery detection. WSEAS Transactions on Signal Processing 5(5), 188–197 (2009)Google Scholar
  8. 8.
    Tripathi, R.C., Singh, V.K.: Fast and efficient region duplication detection in digital images using sub-blocking method. International Journal of Advanced Science and Technology 35, 93–102 (2011)Google Scholar
  9. 9.
    Blelloch, G., Zagha, M.: Radix sort for vector multiprocessors. In: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, pp. 666–675. ACM (1991)Google Scholar
  10. 10.
    Lynch, G., Shih, F.Y., Liao, H.Y.M.: An efficient expanding block algorithm for image copy-move forgery detection. Information Sciences 239, 253–265 (2013)CrossRefGoogle Scholar
  11. 11.
    Fridrich, J.: Digital image forensics. IEEE Signal Processing Magazine 26(2), 26–37 (2009)CrossRefGoogle Scholar
  12. 12.
    Ng, T., Hsu, J., Chang, S.: Columbia Image Splicing Detection Evaluation Dataset,

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sondos M. Fadl
    • 1
  • Noura A. Semary
    • 1
  • Mohiy M. Hadhoud
    • 1
  1. 1.Faculty of Computers and InformationMenofia UniversityEgypt

Personalised recommendations