A Metaontology for Annotating Ontology Entities with Vagueness Descriptions

  • Panos Alexopoulos
  • Silvio Peroni
  • Boris Villazón-Terrazas
  • Jeff Z. Pan
  • José Manuel Gómez-Pérez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8816)

Abstract

The emergence in the last years of initiatives like the Linked Open Data (LOD) has led to a significant increase in the amount of structured semantic data on the Web. Central role to this development has been played by ontologies, as these enable the representation of real world domains in an explicit and formal way and, thus, the production of commonly understood and shareable semantic data. Nevertheless, the shareability and wider reuse of such data can be hampered by the existence of vagueness within it, as this makes the data’s meaning less explicit. With that in mind, in this paper we present and evaluate the Vagueness Ontology, a metaontology that enables the explicit identification and description of vague entities and their vagueness-related characteristics in ontologies. The rationale is that such descriptions, when accompanying vague ontologies, may narrow the possible interpretations that the latter’s vague elements may assume by its users.

References

  1. 1.
    Alexopoulos, P., Pavlopoulos, J.: A vague sense classifier for detecting vague definitions in ontologies. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics: Short Papers, Gothenburg, Sweden, April 2014, vol. 2, pp. 33–37. Association for Computational Linguistics (2014)Google Scholar
  2. 2.
    Alexopoulos, P., Villazon-Terrazas, B., Pan, J.: Towards vagueness-aware semantic data. In: Bobillo, F., Carvalho, R.N., da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Martin, T., Nickles, M., Pool, M. (eds.) URSW, CEUR Workshop Proceedings, vol. 1073, pp. 40–45. CEUR-WS.org (2013)Google Scholar
  3. 3.
    Bao, J., Tao, J., McGuinness, D.L., Smart, P.: Context representation for the semantic web. In: Web Science Conference, 26–27 April 2010 (2010)Google Scholar
  4. 4.
    Barabucci, G., Di Iorio, A., Peroni, S., Poggi, F., Vitali, F.: Annotations with EARMARK in practice: a fairy tale. In: Tomasi, F., Vitali, F., (eds.) Proceedings of the 2013 Workshop on Collaborative Annotations in Shared Environments: Metadata, Vocabularies and Techniques in the Digital Humanities (DH-CASE 2013). ACM Press (2013)Google Scholar
  5. 5.
    Benerecetti, M., Bouquet, P., Ghidini, C.: Contextual reasoning distilled. J. Exp. Theoret. Artif. Intell. 12(3), 279–305 (2000)CrossRefMATHGoogle Scholar
  6. 6.
    Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J. Approximate Reasoning 52(7), 1073–1094 (2011)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Brooke, J.: SUS: a quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., McClelland, A.L. (eds.) Usability Evaluation in Industry, pp. 189–194. Taylor and Francis, London (1996)Google Scholar
  8. 8.
    Buitelaar, P., Sintek, M., Kiesel, M.: A multilingual/multimedia lexicon model for ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 502–513. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Casellas, N.: Ontology evaluation through usability measures. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 594–603. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Chandrasekaran, B., Josephson, J., Benjamins, R.: What are ontologies and why do we need them? IEEE Intell. Syst. 14(1), 20–26 (1999)CrossRefGoogle Scholar
  11. 11.
    Falco, R., Gangemi, A., Peroni, S., Vitali, F.: Modeling OWL ontologies with Graffoo. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014 Satellite Events. LNCS, vol. 8798, pp. 320–325. Springer, Berlin (2014)Google Scholar
  12. 12.
    Gangemi, A., Lehmann, J., Presutti, V., Nissim, M., Catenacci, C.: C-ODO: an OWL meta-model for collaborative ontology design. In: Alani, H., Noy, N., Stumme, G., Mika, P., Sure, Y., Vrandecic, D. (eds.) Workshop on Social and Collaborative Construction of Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada (2007)Google Scholar
  13. 13.
    Hartmann, J., Sure, Y., Haase, P., Palma, R., del Carmen Suárez-Figueroa, M.: OMV - Ontology Metadata Vocabulary. In: Welty, C. (ed.) Ontology Patterns for the Semantic Web Workshop, Galway, Ireland (2005)Google Scholar
  14. 14.
    Hellmann, S., Lehmann, J., Auer, S., Brümmer, M.: Integrating NLP using linked data. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 98–113. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Horridge, M., Patel-Schneider, P.F.: OWL 2 Web Ontology Language: Manchester Syntax. W3C working group note, World Wide Web Consortium, 2nd edn., December 2012Google Scholar
  16. 16.
    Hyde, D.: Vagueness, Logic and Ontology. Ashgate New Critical Thinking in Philosophy. Ashgate, Aldershot (2008)Google Scholar
  17. 17.
    Kahan, J., Koivunen, M.-R.: Annotea: an open RDF infrastructure for shared web annotations. In: Proceedings of the 10th International Conference on World Wide Web (WWW 2001), pp. 623–632. ACM Press, New York (2001)Google Scholar
  18. 18.
    Kotis, K., Vouros, A.: Human-centered ontology engineering: the HCOME methodology. Knowl. Inf. Syst. 10(1), 109–131 (2006)CrossRefGoogle Scholar
  19. 19.
    Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology. W3C recommendation, World Wide Web Consortium, April 2013Google Scholar
  20. 20.
    Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: Kurosu, M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 94–103. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)CrossRefGoogle Scholar
  22. 22.
    Montiel-Ponsoda, E., de Cea, G.A., Suarez-Figueroa, M., Palma, R., Peters, W., Gomez-Perez, A.: LexOMV: an OMV extension to capture multilinguality. In: Proceedings of the OntoLex07, pp. 118–127 (2007–06)Google Scholar
  23. 23.
    Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution in collaborative environments. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 544–558. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Palma, R., Haase, P., Corcho, O., Gómez-Pérez, A.: Change representation for OWL 2 ontologies. In: Hoekstra, R., Patel-Schneider, P.F. (eds.) OWLED, CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2008)Google Scholar
  25. 25.
    Pan, J.Z., Stamou, G., Stoilos, G., Taylor, S., Thomas, E.: Scalable querying services over Fuzzy ontologies. In: The Proceedings of the 17th International World Wide Web Conference (WWW2008) (2008)Google Scholar
  26. 26.
    Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.: Validating ontologies with OOPS!. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 267–281. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Prud’hommeaux, E., Carothers, G.: Turtle - Terse RDF Triple Language. W3C candidate recommendation, World Wide Web Consortium, February 2013Google Scholar
  28. 28.
    Sanderson, R., Ciccarese, P., Van de Sompel, H.: Designing the W3C open annotation data model. In: Proceedings of the 5th Annual ACM Web Science Conference (WebSci13), pp. 366–375. ACM Press (2013)Google Scholar
  29. 29.
    Sauro, J.: A Practical Guide to the System Usability Scale: Background, Benchmarks & Best Practices. CreateSpace, Denver (2011)Google Scholar
  30. 30.
    Shapiro, S.: Vagueness in Context. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  31. 31.
    Stoilos, G., Stamou, G., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive Fuzzy description logics. J. Artif. Intell. Res. 30, 273–320 (2007)MATHMathSciNetGoogle Scholar
  32. 32.
    Strauss, A., Corbin, J.: Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, 2nd edn. Sage Publications, London (1998)Google Scholar
  33. 33.
    Thomas, C., Sheth, A.: On the expressiveness of the languages for the semantic web - making a case for a ‘little more’. In: Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web. Capturing Intelligence, vol. 1, pp. 3–20. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  34. 34.
    Vrandecic, D., Pinto, H.S., Sure, Y., Tempich, C.: The DILIGENT knowledge processes. J. Knowl. Manag. 9(5), 85–96 (2005)CrossRefGoogle Scholar
  35. 35.
    Zadeh, L.A.: From search engines to question-answering systems - the need for new tools. In: Ruiz, E.M., Segovia, J., Szczepaniak, P.S. (eds.) AWIC 2003. LNAI, vol. 2663, pp. 15–17. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Panos Alexopoulos
    • 1
  • Silvio Peroni
    • 2
    • 3
  • Boris Villazón-Terrazas
    • 1
  • Jeff Z. Pan
    • 4
  • José Manuel Gómez-Pérez
    • 1
  1. 1.iSOCOMadridSpain
  2. 2.Department of Computer Science and EngineeringUniversity of BolognaBolognaItaly
  3. 3.STLab-ISTCCNRRomeItaly
  4. 4.Department of Computing ScienceUniversity of AberdeenAberdeenUK

Personalised recommendations