Computing with New Resources pp 56-70

Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Advances on Random Sequence Generation by Uniform Cellular Automata

  • Enrico Formenti
  • Katsunobu Imai
  • Bruno Martin
  • Jean-Baptiste Yunès
Chapter

Abstract

The study of cellular automata rules suitable for cryptographic applications is under consideration. On one hand, cellular automata can be used to generate pseudo-random sequences as well as for the design of S-boxes in symmetric cryptography. On the other hand, Boolean functions with good properties like resiliency and non-linearity are usually obtained either by exhaustive search or by the use of genetic algorithms. We propose here to use some recent research in the classification of Boolean functions and to link it with the study of cellular automata rules. As a consequence of our technique, this also provides a mean to get Boolean functions with good cryptographic properties.

Keywords

Cellular automata Random number generation Boolean functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apohan, A.M., Koc, C.K.: Inversion of cellular automata iterations. Computer and Digital Techniques 144, 279–284 (1997)CrossRefGoogle Scholar
  2. 2.
    Berlekamp, E., Welch, L.: Weight distribution of the cosets of the \((32,6)\) Reed-Muller code. IEEE Trans. Inf. Theory 18, 203–207 (1972)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Braeken, A., Borissov, Y., Nikova, S., Preneel, B.: Classification of Boolean functions of 6 variables or less with respect to some cryptographic properties. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 324–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Carlet, C.: Boolean functions for cryptography and error-correcting codes. Technical report, University of Paris 8 (2011)Google Scholar
  5. 5.
    Cattaneo, G., Formenti, E., Margara, L., Mauri, G.: Transformations of the one-dimensional cellular automata rule space. Parallel Computing 23(11), 1593–1611 (1997)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Elliott, D.E., Rao, K.R.: Fast transforms, algorithms, analysis, applications. Academic press (1982)Google Scholar
  7. 7.
    Formenti, E., Imai, K., Martin, B., Yunès, J.-B.: On 1-resilient, radius 2 elementary CA rules. In: Fatès, N., Goles, E., Maass, A., Rapaport, I. (eds.) Automata 2011, pp. 41–54 (2011)Google Scholar
  8. 8.
    Goldreich, O.: Pseudorandomness. Notices of the AMS 46(10), 1209–1216 (1999)MathSciNetMATHGoogle Scholar
  9. 9.
    Gruska. J.: Foundations of Computing. International Thomson Publishing (1997)Google Scholar
  10. 10.
    Gruska, J., La Torre, S., Parente, M.: The firing squad synchronization problem on squares, toruses and rings. Int. J. Found. Comput. Sci. 18(3), 637–654 (2007)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lacharme, P., Martin, B., Solé, P.: Pseudo-random sequences, boolean functions and cellular automata. In: Proceedings of Boolean Functions and Cryptographic Applications (2008)Google Scholar
  12. 12.
    Marsaglia, G.: A current view of random number generators. In: Computer Sciences and Statistics, pp. 3–10 (1985)Google Scholar
  13. 13.
    Marsaglia, G.: Diehard (1995). http://www.stat.fsu.edu/pub/diehard/
  14. 14.
    Martin, B.: A Walsh exploration of Wolfram CA rules. In: International Workshop on Cellular Automata, pp. 25–30. Hiroshima University, Japan (2006)Google Scholar
  15. 15.
    Martin, B.: Mixing compression and CA encryption. In: Bonnecaze, A., Leneutre, J., State, R. (eds.) SAR-SSI 2007, pp. 255–266. Université Jean Moulin, Lyon (2007)Google Scholar
  16. 16.
    Martin, B.: A Walsh exploration of elementary CA rules. Journal of Cellular Automata 3(2), 145–156 (2008)MathSciNetMATHGoogle Scholar
  17. 17.
    Shackleford, B., Tanaka, M., Carter, R.J., Snider, G.: FPGA implementation of neighborhood-of-four cellular automata random number generators. In: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-Programmable Gate Arrays, FPGA 2002, pp. 106–112. ACM (2002)Google Scholar
  18. 18.
    Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986)Google Scholar
  19. 19.
    Wolfram, S.: Theory and applications of cellular automata. World Scientific, Singapore (1986)MATHGoogle Scholar
  20. 20.
    Wolfram, S.: A new kind of science. Wolfram Media Inc., Champaign (2002)Google Scholar
  21. 21.
    Xiao, G.-Z., Massey, J.L.: A spectral characterization of correlation-immune combining functions. IEEE Trans. on Information Theory 34(3), 569 (1988)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Enrico Formenti
    • 1
  • Katsunobu Imai
    • 2
  • Bruno Martin
    • 1
  • Jean-Baptiste Yunès
    • 3
  1. 1.I3S-CNRSUniv. Nice Sophia AntipolisNiceFrance
  2. 2.Graduate School of EngineeringHiroshima UniversityHiroshimaJapan
  3. 3.LIAFAUniv. Paris DiderotParisFrance

Personalised recommendations