Symmetries and Dualities in Name-Passing Process Calculi

  • Daniel Hirschkoff
  • Jean-Marie Madiot
  • Davide Sangiorgi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)


We study symmetries and duality between input and output in the \(\pi \)-calculus. We show that in dualisable versions of \(\pi \), including \(\pi \) and fusions, duality breaks with the addition of ordinary input/output types. We illustrate two proposals of calculi that overcome these problems. One approach is based on a modification of fusion calculi in which the name equivalences produced by fusions are replaced by name preorders, and with a distinction between positive and negative occurrences of names. The resulting calculus allows us to import subtype systems, and related results, from the pi-calculus. The second approach consists in taking the minimal symmetrical conservative extension of \(\pi \) with input/output types.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boreale, M., Buscemi, M.G., Montanari, U.: A General Name Binding Mechanism. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005. LNCS, vol. 3705, pp. 61–74. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Fu, Y.: The \(\chi \)-calculus. In: Proc. APDC, pp. 74–81. IEEE Computer Society Press (1997)Google Scholar
  3. 3.
    Gardner, P., Wischik, L.: Explicit fusions. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, p. 373. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Hirschkoff, D., Madiot, J.-M., Sangiorgi, D.: Duality and i/o-types in the \(\pi \)-calculus. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 302–316. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Hirschkoff, D., Madiot, J.M., Sangiorgi, D.: Name-Passing Calculi: From Fusions to Preorders and Types. long version of the paper presented at LICS’13, in preparation (2014)Google Scholar
  6. 6.
    Hirschkoff, D., Madiot, J.M., Xu, X.: A behavioural theory for a \(\pi \)-calculus with preorders. submitted (2014)Google Scholar
  7. 7.
    Honda, K., Yoshida, N.: On reduction-based process semantics. Theor. Comp. Sci. 152(2), 437–486 (1995)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Laneve, C., Victor, B.: Solos in Concert. Mathematical Structures in Computer Science 13(5), 657–683 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Milner, R.: Functions as processes. Mathematical Structures in Computer Science 2(2), 119–141 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Parrow, J., Victor, B.: The fusion calculus: expressiveness and symmetry in mobile processes. In: Proc. of LICS, pp. 176–185. IEEE (1998)Google Scholar
  11. 11.
    Parrow, J., Victor, B.: The update calculus (extended abstract). In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 409–423. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. Mathematical Structures in Computer Science 6(5), 409–453 (1996)MathSciNetMATHGoogle Scholar
  13. 13.
    Sangiorgi, D.: \(\pi \)-calculus, internal mobility, and agent-passing calculi. In: Selected papers from TAPSOFT ’95, pp. 235–274. Elsevier (1996)Google Scholar
  14. 14.
    Sangiorgi, D.: Lazy functions and mobile processes. In: Proof, Language, and Interaction, pp. 691–720. The MIT Press (2000)Google Scholar
  15. 15.
    Sangiorgi, D., Walker, D.: The Pi-Calculus: a theory of mobile processes. Cambridge University Press (2001)Google Scholar
  16. 16.
    van Bakel, S., Vigliotti, M.G.: An Implicative Logic based encoding of the \(\lambda \)-calculus into the \(\pi \)-calculus (2014).

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Hirschkoff
    • 1
  • Jean-Marie Madiot
    • 1
  • Davide Sangiorgi
    • 2
  1. 1.ENS LyonUniversité de Lyon CNRS, INRIALyonFrance
  2. 2.INRIA/Università di BolognaBolognaItaly

Personalised recommendations