Advertisement

From Quantum Query Complexity to State Complexity

  • Shenggen Zheng
  • Daowen QiuEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

State complexity of quantum finite automata is one of the interesting topics in studying the power of quantum finite automata. It is therefore of importance to develop general methods how to show state succinctness results for quantum finite automata. One such method is presented and demonstrated in this paper. In particular, we show that state succinctness results can be derived out of query complexity results.

Keywords

Boolean Function Classical State Unitary Transformation State Complexity Communication Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theoretical Computer Science 287, 299–311 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ambainis, A., Freivalds, R.: One-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings of the 39th FOCS, pp. 332–341 (1998).Google Scholar
  3. 3.
    Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and quantum automata. Journal of the ACM 49(4), 496–511 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. Theoretical Computer Science 410, 1916–1922 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ambainis, A., Yakaryilmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112(7), 289–291 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ambainis, A.: Superlinear advantage for exact quantum algorithms. In: Proceedings of 45th STOC, pp. 891–900 (2013).Google Scholar
  7. 7.
    Ambainis, A., Iraids, A., Smotrovs, J.: Exact quantum query complexity of EXACT and THRESHOLD. In: Proceedings of 8th TQC, pp. 263–269 (2013)Google Scholar
  8. 8.
    Ambainis, A., Gruska, J., Zheng, S.G.: Exact query complexity of some special classes of Boolean functions, arXiv:1404.1684 (2014)
  9. 9.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. Journal of the ACM 48, 778–797 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bertoni, A., Mereghetti, C., Palano, B.: Small size quantum automata recognizing. Theoretical Computer Science 340, 394–407 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bertoni, A., Mereghetti, C., Palano, B.: Some formal tools for analyzing quantum automata. Theoretical Computer Science 356, 14–25 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Brassard, G., Høyer, P.: An exact quantum polynomial-time algorithm for Simon’s problem. In: Proceedings of the Israeli Symposium on Theory of Computing and Systems, pp. 12–23 (1997).Google Scholar
  13. 13.
    Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata. SIAM Journal on Computing 31, 1456–1478 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proceedings of 30th STOC, pp. 63–68 (1998).Google Scholar
  15. 15.
    Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theoretical Computer Science 288, 21–43 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Nonlocality and Communication Complexity. Rev. Mod. Phys. 82, 665–698 (2010)CrossRefGoogle Scholar
  17. 17.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London A439, 553–558 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Frankl, P., Rödl, V.: Forbidden intersections. Trans. Amer. Math. Soc. 300(1), 259–286 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Freivalds, R., Ozols, M., Mancinska, L.: Improved constructions of mixed state quantum automata. Theoretical Computer Science 410, 1923–1931 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gruska, J.: Foundations of computing. Thomson International Computer Press (1997).Google Scholar
  21. 21.
    Gruska, J.: Quantum Computing. McGraw-Hill, London (1999)zbMATHGoogle Scholar
  22. 22.
    Gruska, J.: Descriptional complexity issues in quantum computing. J. Automata, Languages Combin. 5(3), 191–218 (2000).Google Scholar
  23. 23.
    Gruska, J., Qiu, D.W., Zheng, S.G.: Generalizations of the distributed Deutsch-Jozsa promise problem, arXiv:1402.7254 (2014)
  24. 24.
    Gruska, J., Qiu, D.W., Zheng, S.G.: Potential of quantum finite automata with exact acceptance, arXiv:1404.1689 (2014)
  25. 25.
    Hromkovič, J., Schintger, G.: On the Power of Las Vegas for One-Way Communication Complexity. OBDDs, and Finite Automata, Information and Computation 169, 284–296 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way protocols. In: Proceedings of the 32th STOC, pp. 644–651 (2000).Google Scholar
  27. 27.
    Kushilevitz, E.: Communication Complexity. Cambridge University Press (1997).Google Scholar
  28. 28.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proceedings of the 38th FOCS, pp. 66–75 (1997).Google Scholar
  29. 29.
    Le Gall, F.: Exponential separation of quantum and classical online space complexity. In: Proceedings of SPAA 2006, pp. 67–73 (2006)Google Scholar
  30. 30.
    Mereghetti, C., Palano, B., Pighizzini, G.: Note on the Succinctness of Deterministic, Nondeterministic, Probabilistic and Quantum Finite Automata. RAIRO-Inf. Theor. Appl. 35, 477–490 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mereghetti, C., Palano, B.: On the size of one-way quantum finite automata with periodic behaviors. RAIRO-Inf. Theor. Appl. 36, 277–291 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Montanaro, A., Jozsa, R., Mitchison, G.: On exact quantum query complexity, Algorithmica (2013) doi: 10.1007/s00453-013-9826-8
  33. 33.
    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoretical Computer Science 237, 275–306 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Qiu, D.W., Li, L.Z., Zou, X.F., Mateus, P., Gruska, J.: Multi-letter quantum finite automata: decidability of the equivalence and minimization of states. Acta Inf. 48, 271–290 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Qiu, D.W., Li, L.Z., Mateus, P., Gruska, J.: Quantum finite automata. In: Finite State Based Models and Applications, CRC Handbook, pp. 113–144. CRC Press (2012).Google Scholar
  36. 36.
    Yao, A.C.: Some Complexity Questions Related to Distributed Computing. In: Proceedings of 11th STOC, pp. 209–213 (1979)Google Scholar
  37. 37.
    Yu, S.: State Complexity: Recent Results and Open Problems. Fundamenta Informaticae 64, 471–480 (2005)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Yakaryilmaz, A., Cem Say, A.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 209, 873–892 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Yakaryilmaz, A., Cem Say, A.C.: Succinctness of two-way probabilistic and quantum finite automata. Discrete Mathematics and Theoretical Computer Science 12(4), 19–40 (2010)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Zheng, S.G., Qiu, D.W., Li, L.Z.: Some languages recognized by two-way finite automata with quantum and classical states. International Journal of Foundation of Computer Science 23(5), 1117–1129 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Zheng, S.G., Qiu, D.W., Li, L.Z., Gruska, J.: One-Way Finite Automata with Quantum and Classical States. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 273–290. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  42. 42.
    Zheng, S.G., Qiu, D.W., Gruska, J., Li, L.Z., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. Theoretical Computer Science 499, 98–112 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Zheng, S.G., Gruska, J., Qiu, D.W.: On the state complexity of semi-quantum finite automata. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 601–612. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  44. 44.
    Zheng, S.G., Gruska, J., Qiu, D.W.: Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata, arXiv:1304.3876 (2013)

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Computer ScienceSun Yat-sen UniversityGuangzhouChina

Personalised recommendations