Advertisement

Counting with Probabilistic and Ultrametric Finite Automata

  • Kaspars BalodisEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8808)

Abstract

We investigate the state complexity of probabilistic and ultrametric finite automata for the problem of counting, i.e. recognizing the one-word unary language \(C_n=\left\{ 1^n \right\} \). We also review the known results for other types of automata.

For one-way probabilistic automata, we construct a minimal \(3\)-state automaton for counting to \(n\) with isolated cutpoint (but with decreasing isolation radius as \(n\) increases). We construct a two-way probabilistic automaton that counts to \(n\) with a constant number of states. We also show a minimal \(2\)-state ultrametric automaton for counting.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambainis, A.: The complexity of probabilistic versus deterministic. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 233–238. Springer, Heidelberg (1996). http://dx.doi.org/10.1007/BFb0009499 CrossRefGoogle Scholar
  2. 2.
    Bach, E., Shallit, J.: Algorithmic Number Theory. MIT Press, Cambridge, MA, USA (1996)zbMATHGoogle Scholar
  3. 3.
    Balodis, K.: One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata. In: Gsieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 40–47. Springer, Heidelberg (2013). http://dx.doi.org/10.1007/978-3-642-40164-0_7 CrossRefGoogle Scholar
  4. 4.
    Balodis, K., Beriņa, A., Cīpola, K., Dimitrijevs, M., Iraids, J., Jēriņš, K., Kacs, V., Kalējs, J., Krišlauks, R., Lukstiņš, K., Raumanis, R., Scegulnaja, I., Somova, N., Vanaga, A., Freivalds, R.: On the state complexity of ultrametric finite automata. In: SOFSEM 2013: Theory and Practice of Computer Science, vol. 2, pp. 1–9 (2013)Google Scholar
  5. 5.
    Birget, J.C.: Two-way automata and length-preserving homomorphisms. Mathematical Systems Theory 29(3), 191–226 (1996). http://dx.doi.org/10.1007/BF01201276 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dragovich, B., Dragovich, A.: A p-adic model of dna sequence and genetic code. p-Adic Numbers, Ultrametric Analysis, and Applications 1(1), 34–41 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Freivalds, R.: On the growth of the number of states in result of the determinization of probabilistic finite automata. Avtomatika i Vicislitelnaja Tehnika 3, 39–42 (1982). (in Russian)Google Scholar
  8. 8.
    Freivalds, R.: Ultrametric automata and turing machines. In: Voronkov, A. (ed.) Turing-100, EPiC Series, vol. 10, pp. 98–112. EasyChair (2012)Google Scholar
  9. 9.
    Freivalds, R.: Probabilistic two-way machines. In: Gruska, J., Chytil, M.P. (eds.) MFCS 1981. LNCS, vol. 118, pp. 33–45. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  10. 10.
    Gruska, J.: Foundations of Computing. International Thomson Computer Press, Boston, MA, USA (1997)Google Scholar
  11. 11.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory. Addison-Wesley, Languages and Computation (1979)zbMATHGoogle Scholar
  12. 12.
    Kozyrev, S.V.: Ultrametric analysis and interbasin kinetics. In: 2nd International Conference on p-adic Mathematical Physics, vol. 826, pp. 121–128. AIP Publishing (2006)Google Scholar
  13. 13.
    Krišlauks, R., Rukšāne, I., Balodis, K., Kucevalovs, I., Freivalds, R., Nāgele, I.: Ultrametric turing machines with limited reversal complexity. In: SOFSEM 2013: Theory and Practice of Computer Science, vol. 2, pp. 87–94 (2013)Google Scholar
  14. 14.
    Kupferman, O., Ta-Shma, A., Vardi, M.Y.: Counting with automata (2001)Google Scholar
  15. 15.
    Leiss, E.: Succinct representation of regular languages by boolean automata. Theoretical Computer Science 13(3), 323–330 (1981). http://www.sciencedirect.com/science/article/pii/S0304397581800059 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Madore, D.A.: A first introduction to p-adic numbers (2000). http://www.madore.org/~david/math/padics.pdf
  17. 17.
    Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963). http://www.sciencedirect.com/science/article/pii/S0019995863902900 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Turakainen, P.: Generalized automata and stochastic languages. Proceedings of The American Mathematical Society 21, 303–309 (1969)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations