DynaMate: Dynamically Inferring Loop Invariants for Automatic Full Functional Verification

  • Juan Pablo Galeotti
  • Carlo A. Furia
  • Eva May
  • Gordon Fraser
  • Andreas Zeller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8855)

Abstract

DYNAMATE is a tool that automatically infers loop invariants and uses them to prove Java programs correct with respect to a given JML functional specification. DYNAMATE improves the flexibility of loop invariant inference by integrating static (proving) and dynamic (testing) techniques with the goal of combining their complementary strengths. In an experimental evaluation involving 26 Java methods of java.util annotated with JML pre- and postconditions, it automatically discharged over 97% of all proof obligations, resulting in automatic complete correctness proofs of 23 out of the 26 methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast. STTT 9(5-6), 505–525 (2007)CrossRefGoogle Scholar
  2. 2.
    Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced specification and verification with JML and eSC/Java2. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic and scalable array content analysis. In: POPL, pp. 105–118. ACM (2011)Google Scholar
  5. 5.
    Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely program invariants to support program evolution. IEEE TSE 27(2), 99–123 (2001)Google Scholar
  6. 6.
    Fraser, G., Arcuri, A.: Evolutionary generation of whole test suites. In: QSIC, pp. 31–40. IEEE Computer Society (2011)Google Scholar
  7. 7.
    Furia, C.A., Meyer, B., Velder, S.: Loop invariants: Analysis, classification, and examples. ACM Comp. Sur. 46(3) (2014)Google Scholar
  8. 8.
    Galeotti, J.P., Furia, C.A., May, E., Fraser, G., Zeller, A.: Automating full functional verification of programs with loops (submitted, July 2014), http://arxiv.org/abs/1407.5286
  9. 9.
    Gupta, A., Rybalchenko, A.: InvGen: An efficient invariant generator. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Workshop (2010), http://fm.csl.sri.com/UV10/
  12. 12.
    Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In: PLDI, pp. 349–361. ACM (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Juan Pablo Galeotti
    • 1
  • Carlo A. Furia
    • 2
  • Eva May
    • 1
  • Gordon Fraser
    • 3
  • Andreas Zeller
    • 1
  1. 1.Software EngineeringSaarland UniversitySaarbrückenGermany
  2. 2.Software Engineering, Department of Computer ScienceETH ZurichSwitzerland
  3. 3.Department of Computer ScienceUniversity of SheffieldUK

Personalised recommendations