Reduction of Resolution Refutations and Interpolants via Subsumption

  • Roderick Bloem
  • Sharad Malik
  • Matthias Schlaipfer
  • Georg Weissenbacher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8855)

Abstract

Propositional resolution proofs and interpolants derived from them are widely used in automated verification and circuit synthesis. There is a broad consensus that “small is beautiful”—small proofs and interpolants lead to concise abstractions in verification and compact designs in synthesis.Contemporary proof reduction techniques either minimise the proof during construction, or perform a post-hoc transformation of a given resolution proof. We focus on the latter class and present a subsumption-based proof reduction algorithm that extends existing singlepass analyses and relies on a meet-over-all-paths analysis to identify redundant resolution steps and clauses.We show that smaller refutations do not necessarily entail smaller interpolants, and use labelled interpolation systems to generalise our reduction approach to interpolants. Experimental results support the theoretical claims.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation between regular and general resolution. In: STOC. ACM (2002)Google Scholar
  2. 2.
    Andrews, P.B.: Resolution with merging. J. ACM 15(3), 367–381 (1968)CrossRefMATHGoogle Scholar
  3. 3.
    Bar-Ilan, O., Fuhrmann, O., Hoory, S., Shacham, O., Strichman, O.: Reducing the size of resolution proofs in linear time. STTT 13(3), 263–272 (2011)CrossRefGoogle Scholar
  4. 4.
    Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient mus extraction. AI Communications 25(2), 97–116 (2012)MATHMathSciNetGoogle Scholar
  5. 5.
    Biere, A.: PicoSAT essentials. JSAT 4(2-4), 75–97 (2008)MATHGoogle Scholar
  6. 6.
    Bloem, R., Könighofer, R., Seidl, M.: Sat-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Boudou, J., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs by lowering subproofs. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 59–73. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Cabodi, G., Loiacono, C., Vendraminetto, D.: Optimization techniques for craig interpolant compaction in unbounded model checking. In: Design, Automation and Test in Europe, pp. 1417–1422. ACM (2013)Google Scholar
  9. 9.
    Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symbolic Logic 22(3), 250–268 (1957)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    D’Silva, V.: Propositional interpolation and abstract interpretation. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 185–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Restructuring resolution refutations for interpolation. Technical report, Oxford (October 2008)Google Scholar
  12. 12.
    D’Silva, V., Kroening, D., Purandare, M., Weissenbacher, G.: Interpolant strength. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 129–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Compression of propositional resolution proofs via partial regularization. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 237–251. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Gershman, R., Koifman, M., Strichman, O.: Deriving small unsatisfiable cores with dominators. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 109–122. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Design, Automation and Test in Europe, pp. 886–891. IEEE (2003)Google Scholar
  16. 16.
    Gupta, A.: Improved single pass algorithms for resolution proof reduction. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 107–121. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    McMillan, K.L.: Applications of Craig Interpolants in Model Checking. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Hofferek, G., Gupta, A., Könighofer, B., Jiang, J.-H.R., Bloem, R.: Synthesizing multiple boolean functions using interpolation on a single proof. In: Formal Methods in Computer-Aided Design, pp. 77–84. IEEE (2013)Google Scholar
  19. 19.
    Huang, G.: Constructing Craig interpolation formulas. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  20. 20.
    Jiang, J.-H.R., Lin, H.-P., Hung, W.-L.: Interpolating functions from large Boolean relations. In: ICCAD, pp. 779–784. ACM (2009)Google Scholar
  21. 21.
    Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic 62(2), 457–486 (1997)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    McMillan, K.L.: An interpolating theorem prover. Theoretical Comput. Sci. 345(1), 101–121 (2005)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Nadel, A., Ryvchin, V., Strichman, O.: Efficient MUS extraction with resolution. In: Formal Methods in Computer-Aided Design, pp. 197–200. IEEE (2013)Google Scholar
  26. 26.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symbolic Logic 62(3), 981–998 (1997)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO: A framework for producing effective interpolants in SAT-based software verification. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 683–693. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Rollini, S.F., Bruttomesso, R., Sharygina, N., Tsitovich, A.: Resolution proof transformation for compression and interpolation. The Computing Research Repository, abs/1307.2028 (2013)Google Scholar
  29. 29.
    Simmonds, J., Davies, J., Gurfinkel, A., Chechik, M.: Exploiting resolution proofs to speed up LTL vacuity detection for BMC. STTT 12(5), 319–335 (2010)CrossRefGoogle Scholar
  30. 30.
    Tseitin, G.: On the complexity of derivation in propositional calculus. Studies in Mathematics and Mathematical Logic, Part II (1970)Google Scholar
  31. 31.
    Urquhart, A.: The complexity of propositional proofs. Bulletin of Symbolic Logic 1(4), 425–467 (1995)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Wu, B.-H., Yang, C.-J., Huang, C.-Y., Jiang, J.-H.: A robust functional ECO engine by SAT proof minimization and interpolation techniques. In: ICCAD (2010)Google Scholar
  33. 33.
    Zhang, L.: On subsumption removal and on-the-fly CNF simplification. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 482–489. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roderick Bloem
    • 1
  • Sharad Malik
    • 2
  • Matthias Schlaipfer
    • 3
  • Georg Weissenbacher
    • 3
  1. 1.Graz University of TechnologyAustria
  2. 2.Princeton UniversityUSA
  3. 3.Vienna University of TechnologyAustria

Personalised recommendations