Advertisement

Content Centricity in Constrained Cellular-Assisted D2D Communications

  • Salah-Eddine Belouanas
  • Kim-Loan Thai
  • Prométhée Spathis
  • Marcelo Dias de Amorim
  • Franck Rousseau
  • Andrzej Duda
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 140)

Abstract

The huge increase of mobile traffic in the latest years has put cellular networks under pressure. To face this situation, operators propose to adopt data offloading techniques based on device-to-device communications to alleviate their infrastructure. In this paper, we consider a specific scenario in which the cellular channel has severe capacity limitations. Existing offloading techniques focus on the underlying communication mechanisms and fail to properly manage the interest users have in content. The straightforward approach to tackle this issue is to rely on the content-centric networking (CCN) paradigm. Nevertheless, the hybrid nature of our scenario makes this vision challenging—what should circulate through the cellular channel and what should remain within the opportunistic network? In this paper, we investigate our target scenario and identify a number of challenges therein. We finally define a high-level architecture that we intend to instantiate in the case of a public infrastructure scenario.

Keywords

Opportunistic device-to-device communications Infrastructure wireless networks Content-centric networking Data offloading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cisco, Cisco visual networking index: Forecast and methodology, 2013–2018 (2014)Google Scholar
  2. 2.
    Gupta, A., Min, J., Rhee, I.: WiFox: Scaling wifi performance for large audience environments. In: ACM CoNEXT, Nice, France (December 2012)Google Scholar
  3. 3.
    Han, B., Hui, P., Kumar, V.S.A., Marathe, V.M., Peig, G., Srinivasan, A.: Cellular trafficc offoading through opportunistic communications: a case study. In: ACM CHANTS, NY, USA, New York (2010)Google Scholar
  4. 4.
    Han, B., Hui, P., Kumar, V.S.A., Marathe, M.V., Shao, J., Srinivasan, A.: Mobile data offloading through opportunistic communications and social participation. IEEE Transactions on Mobile Computing 11, 821–834 (2012)CrossRefGoogle Scholar
  5. 5.
    Lee, K., Rhee, I., Lee, J., Yi, Y., Chong, S.: Mobile data offloading: how much can wifi deliver? ACM SIGCOMM Computer Communication Review 40(4), 425–426 (2010)CrossRefGoogle Scholar
  6. 6.
    Whitbeck, J., Lopez, Y., Leguay, J., Conan, V., de Amorim, M.D.: Push-and-track: Saving infrastructure bandwidth through opportunistic forwarding. Pervasive and Mobile Computing 8, 682–697 (2012)CrossRefGoogle Scholar
  7. 7.
    Rebecchi, F., de Amorim, M.D., Conan, V.: DROiD: Adapting to individual mobility pays off in mobile data offloading. In: IFIP Networking, Trondheim, Norway (June 2014)Google Scholar
  8. 8.
    Jacobson, V.; A new way to look at networking. Google Tech Talk (2006)Google Scholar
  9. 9.
    Jacobson, V., Smetters, D.K., Thorntona, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Networking named content. In: ACM CoNEXT, NY, USA, New York (2009)Google Scholar
  10. 10.
    Chuang, Y., Lin, K.C.: Cellular traffic offloading through community-based opportunistic dissemination. In: WCNC 2012. IEEE, Shanghai (April 2012)Google Scholar
  11. 11.
    Bhatia, R., Narlikar, G., Rimac, I., Beck, A.: Unap: User-centric network-aware push for mobile content delivery. In: INFOCOM 2009, IEEE, Rio De Janeiro (2009)Google Scholar
  12. 12.
    Balasubramanian, A., Mahajan, R., Venkataramani, A.: Augmenting mobile 3G using WiFi. In: ACM Mobisys, CA, USA, San Francisco (June 2010)Google Scholar
  13. 13.
    Higgins, B., Reda, A., Alperovich, T., Flinn, J., Giuli, T., Noble, B., Watson, D.: Intentional networking: opportunistic exploitation of mobile network diversity. In: MobiCom 2010. ACM, New York (2010)Google Scholar
  14. 14.
    Moto project. https://fp7-moto.eu/
  15. 15.
    Newman, M.E.J.: Detecting community structure in networks. The European Physical Journal B - Condensed Matter and Complex Systems 38, 321–330 (2004)CrossRefGoogle Scholar
  16. 16.
    Caesar, M., Condie, T., Kannan, J., Lakshminarayanan, K., Stoica, I.: Rofl: routing on flat labels. In: SIGCOMM 2006, Pisa, Italy (October 2006)Google Scholar
  17. 17.
    Cheriton, D., Gritter, M.: An architecture for content routing support in the internet. In: USITS 2001, CA, USA, San Francisco (March2001)Google Scholar
  18. 18.
    Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, S.K.H., Stoica, I.: A data-oriented (and beyond) network architecture. In: SIGCOMM 2007, NY, USA, New York (2007)Google Scholar
  19. 19.
    Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornton, J.D., Smetters, D.K., Zhang, B., Tsudik, G., Claffy, K., Krioukov, D., Massey, D., Papadopoulos, C., Abdelzaher, T., Wang, L., Crowley, P., Yeh, E.: Named data networking (ndn) project, tech. rep, ndn-0001 (October 2010)Google Scholar
  20. 20.
    Oh, S., Lau, D., Gerla, M.: Content centric networking in tactical and emergency manets. In: IEEE Wireless Days (WD), NY, USA, New York (October 2010)Google Scholar
  21. 21.
    Wang, L., Afanasyev, Kuntz, R., Vuyyuru, R., Wakikawa, R., Zhang, L.: Rapid traffic information dissemination using named data. In: The 1st ACM Workshop on Emerging Name-Oriented Mobile Networking Design - Architecture, Algorithms, and Applications, New York, NY, USA (2012)Google Scholar
  22. 22.
    Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Bubblerap:social-based forwarding in delay tolerant networks. In: ACM Mobihoc, NY, USA, New York (2008)Google Scholar
  23. 23.
    Datatweet project. https://datatweet.imag.fr/

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  • Salah-Eddine Belouanas
    • 1
  • Kim-Loan Thai
    • 1
  • Prométhée Spathis
    • 1
  • Marcelo Dias de Amorim
    • 1
  • Franck Rousseau
    • 2
  • Andrzej Duda
    • 2
  1. 1.LIP6/CNRS – UPMC Sorbonne UniversitésParisFrance
  2. 2.Grenoble Institute of Technology, Grenoble Informatics LaboratoryGrenobleFrance

Personalised recommendations