Advertisement

Investigating the Performance of Link Aggregation on OpenFlow Switches

  • Toan Nguyen-DucEmail author
  • Hoang Tran-Viet
  • Kien Nguyen
  • Quang Tran Minh
  • Son Hong Ngo
  • Shigeki Yamada
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 137)

Abstract

In this paper, we extensively explore the operation of Link Aggregation (LA) on OpenFlow switches in comparison to the LA in conventional switches. The comparison of two LA implementations has been conducted in a real testbed under the UDP and TCP traffic loads. The testbed includes Pica8 P-3925 switches, which support two modes: an OpenFlow switch (i.e., using Open vSwitch) and a conventional switch (i.e., using the operating system called XorPlus). The evaluation results show that two LA implementations achieve similar performance in improving throughput. However, the XorPlus implementation provides a better resilience than the other. Specifically, the LA implementation on XorPlus spends less than 1.49538 seconds to switch the TCP traffic on the faulty link to the other links of a Link Aggregation Group (LAG) while the switchover time is four times longer on the Open vSwitch. In the case of UDP traffic, the maximum switchover time on the Open vSwitch is twice the one on XorPlus.

Keywords

Link aggregation Resilient Aggregation bandwidth  Openflow switch Evaluation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Lara, A., Kolasani, A., Ramamurthy, B.: Network innovation using openflow: A survey. IEEE Trans. Communications Surveys Tutorials 16(1), 493–512 (2014)CrossRefGoogle Scholar
  3. 3.
    McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38(2) (2008)Google Scholar
  4. 4.
    Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4: experience with a globally-deployed software defined wan. In: Proc. ACM SIGCOMM 2013, pp. 3–14 (2013)Google Scholar
  5. 5.
    Mateo, M.P.: OpenFlow Switching Performance. Master’s thesis, Politecnico di Torino (July 2009). http://www.openflow.org/downloads/technicalreports/MS_Thesis_Polito_2009_Manuel_Palacin_OpenFlow.pdf
  6. 6.
    Bianco, A., Birke, R., Giraudo, L., Palacin, M.: Openflow switching: Data plane performance. In: Proc. IEEE International Conference on Communications (ICC), pp. 1–5 (2010)Google Scholar
  7. 7.
    PPELMAN, M.A.: Performance Analysis of OpenFlow Hardware. Master’s thesis, University of Amsterdam (December 2012). http://www.delaat.net/rp/2011-2012/p18/report.pdf
  8. 8.
  9. 9.
  10. 10.
    Pfaff, B., Pettit, J., Koponen, T., Amidon, K., Casado, M., Shenker, S.: Extending networking into the virtualization layer. In: Proc. of Workshop on Hot Topics in Networks (HotNets-VIII) (2009)Google Scholar
  11. 11.
    IEEE 802.3ad Link Aggregation Task Force (2000). http://www.ieee802.org/3/ad/
  12. 12.
    Zhang, J., Moore, A.: Traffic trace artifacts due to monitoring via port mirroring. In: Proc. IEEE End-to-End Monitoring Techniques and Services 2007, pp. 1–8 (2007)Google Scholar
  13. 13.
  14. 14.
  15. 15.
  16. 16.
  17. 17.

Copyright information

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014

Authors and Affiliations

  • Toan Nguyen-Duc
    • 1
    Email author
  • Hoang Tran-Viet
    • 1
  • Kien Nguyen
    • 1
    • 2
  • Quang Tran Minh
    • 2
  • Son Hong Ngo
    • 1
  • Shigeki Yamada
    • 2
  1. 1.Hanoi University of Science and TechnologyHanoiVietnam
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations