Advertisement

A Customizable Approach for Monitoring Activities of Elderly Users in Their Homes

  • Jonas UllbergEmail author
  • Amy Loutfi
  • Federico Pecora
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8703)

Abstract

This paper presents an implemented context recognition system that enables caregivers to query and visualize daily activities of elderly who live in their own homes. The system currently serves several homes across Europe and provides caregivers with the ability to correlate activities with specific health indicators. The system also allows to define conditions under which alarms should be raised.

Keywords

Activity Recognition Secondary User Motion Sensor Environmental Sensor Smoke Alarm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Allen, J.: Towards a general theory of action and time. Artif. Intell. 23(2), 123–154 (1984)CrossRefzbMATHGoogle Scholar
  2. 2.
    Augusto, J., Nugent, C.: The use of temporal reasoning and management of complex events in smart homes. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI) (2004)Google Scholar
  3. 3.
    Cesta, A., Cortellessa, G., Rasconi, R., Pecora, F., Scopelliti, M., Tiberio, L.: Monitoring elderly people with the robocare domestic environment: Interaction synthesis and user evaluation. Comput. Intell. 27(1), 60–82 (2011). Special Issue on Scheduling and Planning ApplicationsCrossRefMathSciNetGoogle Scholar
  4. 4.
    Coradeschi, S., Cesta, A., Cortellessa, G., Coraci, L., Gonzalez, J., Karlsson, L., Furfari, F., Loutfi, A., Orlandini, A., Palumbo, F., Pecora, F., von Rump, S., Stimec, A., Ullberg, J., Östlund, B.: Giraffplus: Combining social interaction and long term monitoring for promoting independent living. In: 6th International Conference on Human System Interactions (HSI), pp. 578–585 (2013)Google Scholar
  5. 5.
    Dousson, C., Maigat, P.L.: Chronicle recognition improvement using temporal focusing and hierarchization. In: Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI’07, pp. 324–329. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  6. 6.
    Duong, T., Bui, H., Phung, D., Venkatesh, S.: Activity recognition and abnormality detection with the switching hidden semi-markov model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2005)Google Scholar
  7. 7.
    Goultiaeva, A., Lespérance, Y.: Incremental plan recognition in an agent programming framework. In: Working Notes of the AAAI Workshop on Plan, Activity, and Intention Recognition (PAIR) (2007)Google Scholar
  8. 8.
    Helaoui, R., Niepert, M., Stuckenschmidt, H.: Recognizing interleaved and concurrent activities: a statistical-relational approach. In: Proccedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom) (2011)Google Scholar
  9. 9.
    Jakkula, V., Cook, D., Crandall, A.: Temporal pattern discovery for anomaly detection in a smart home. In: Proceedings of the 3rd IET Conference on Intelligent Environments (IE) (2007)Google Scholar
  10. 10.
    Liao, L., Fox, D., Kautz, H.: Extracting places and activities from gps traces using hierarchical conditional random fields. Robot. Res. 26(1), 119–134 (2007)CrossRefGoogle Scholar
  11. 11.
    Mckeever, S., Ye, J., Coyle, L., Bleakley, C., Dobson, S.: Activity recognition using temporal evidence theory. Ambient Intell. Smart Environ. 2(3), 253–269 (2010)Google Scholar
  12. 12.
    Modayil, J., Bai, T., Kautz, H.: Improving the recognition of interleaved activities. In: Proceedings of the 10th International Conference on Ubiquitous Computing (UbiComp) (2008)Google Scholar
  13. 13.
    Palumbo, F., Ullberg, J., S̆timec, A., Furfari, F., Karlsson, L., Coradeschi, S.: Sensor network infrastructure for a home care monitoring system. Sensors 14(3), 3833–3860 (2014). http://www.mdpi.com/1424-8220/14/3/3833
  14. 14.
    Patterson, D., Fox, D., Kautz, H., Philipose, M.: Fine-grained activity recognition by aggregating abstract object usage. In: Proceedings of the 9th IEEE International Symposium on Wearable Computers (2005)Google Scholar
  15. 15.
    Pecora, F., Cirillo, M., Dell’Osa, F., Ullberg, J., Saffiotti, A.: A constraint-based approach for proactive, context-aware human support. J. Ambient Intell. Smart Environ. 4(4), 347–367 (2012)Google Scholar
  16. 16.
    Pinhanez, C., Bobick, A.: Fast constraint propagation on specialized allen networks and its application to action recognition and control. Technical report 456, M.I.T. Media Lab, Perceptual Computing Section (1998)Google Scholar
  17. 17.
    Pollack, M., Brown, L., Colbry, D., McCarthy, C., Orosz, C., Peintner, B., Ramakrishnan, S., Tsamardinos, I.: Autominder: an intelligent cognitive orthotic system for people with memory impairment. Robot. Auton. Syst. 44(3–4), 273–282 (2003)CrossRefGoogle Scholar
  18. 18.
    Pujari, A.K., Kumari, G.V., Sattar, A.: Indu: an interval duration network. In: Foo, Norman Y. (ed.) AI 1999. LNCS, vol. 1747, pp. 291–303. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Riboni, D., Bettini, C.: Context-aware activity recognition through a combination of ontological and statistical reasoning. In: Zhang, D., Portmann, M., Tan, A.-H., Indulska, J. (eds.) UIC 2009. LNCS, vol. 5585, pp. 39–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Shanahan, M.: Robotics and the common sense informatic situation. In: Proceedings of the 12th European Conference on Artificial Intelligence (ECAI) (1996)Google Scholar
  21. 21.
    Singla, G., Cook, D.J., Schmitter-Edgecombe, M.: Recognizing independent and joint activities among multiple residents in smart environments. Ambient Intell. Humanized Comput. 1(1), 57–63 (2010)CrossRefGoogle Scholar
  22. 22.
    Springer, T., Turhan, A.Y.: Employing description logics in ambient intelligence for modeling and reasoning about complex situations. Ambient Intell. Smart Environ. 1(3), 235–259 (2009)Google Scholar
  23. 23.
    Tazari, M.R., Furfari, F., Lázaro Ramos, J.P., Ferro, E.: The PERSONA service platform for AAL spaces. In: Nakashima, H., Aghajan, H., Augusto, J.C. (eds.) Handbook of Ambient Intelligence and Smart Environments, pp. 1171–1199. Springer, New York (2010)CrossRefGoogle Scholar
  24. 24.
    Ullberg, J., Pecora, F.: Propagating constraints on sets of intervals. In: ICAPS Workshop on Planning and Scheduling with Timelines (PSTL) (2012)Google Scholar
  25. 25.
    Wu, J., Osuntogun, A., Choudhury, T., Philipose, M., Rehg, J.: A scalable approach to activity recognition based on object use. In: Proceedings of ICCV 2007 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Center for Applied Autonomous Sensor SystemsÖrebro UniversityÖrebroSweden

Personalised recommendations