Advertisement

Computational Complexity of the \(r\)-visibility Guard Set Problem for Polyominoes

  • Chuzo IwamotoEmail author
  • Toshihiko Kume
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8845)

Abstract

We study the art gallery problem when the instance is a polyomino, which is the union of connected unit squares. It is shown that locating the minimum number of guards with \(r\)-visibility in a polyomino with holes is NP-hard. Here, two points \(u\) and \(v\) on a polyomino are r-visible if the orthogonal bounding rectangle for \(u\) and \(v\) lies entirely within the polyomino. As a corollary, locating the minimum number of guards with \(r\)-visibility in an orthogonal polygon with holes is NP-hard.

Keywords

Art gallery problem Polyomino \(r\)-visibility NP-hard 

References

  1. 1.
    Biedl, T., Irfan, M.T., Iwerks, J., Kim, J., Mitchell, J.S.B.: Guarding polyominoes. In: 27th Annual Symposium on Computational Geometry, pp. 387–396 (2011)Google Scholar
  2. 2.
    Biedl, T., Irfan, M.T., Iwerks, J., Kim, J., Mitchell, J.S.B.: The art gallery theorem for polyominoes. Discrete Comput. Geom. 48(3), 711–720 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Cerioli, M.R., Faria, L., Ferreira, T.O., Martinhon, C.A.J., Protti, F., Reed, B.: Partition into cliques for cubic graphs: Planar case, complexity and approximation. Discrete Appl. Math. 156(12), 2270–2278 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory B. 18, 39–41 (1975)CrossRefzbMATHGoogle Scholar
  5. 5.
    Eidenbenz, S.J., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31, 79–113 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  7. 7.
    Hoffman, F.: On the rectilinear art gallery problem. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 717–728. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Comp. Geom. Theor. Appl. 39(3), 219–228 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inform. Theory 32(2), 276–282 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, New York (1987)zbMATHGoogle Scholar
  11. 11.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Mass (1994)zbMATHGoogle Scholar
  12. 12.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)CrossRefGoogle Scholar
  13. 13.
    Schuchardt, D., Hecker, H.-D.: Two NP-hard art-gallery problems for ortho-polygons. Math. Logic Quar. 41(2), 261–267 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery problem. Int. J. Comput. Geom. Ap. 17(2), 105–138 (2007)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Graduate School of Engineering, Hiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations