Lightweight Zero-Knowledge Proofs for Crypto-Computing Protocols

  • Sven Laur
  • Bingsheng Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8783)

Abstract

Crypto-computing is a set of well-known techniques for computing with encrypted data. The security of the corresponding protocols are usually proven in the semi-honest model. In this work, we propose a new class of zero-knowledge proofs, which are tailored for crypto-computing protocols. First, these proofs directly employ properties of the underlying crypto systems and thus many facts have more concise proofs compared to generic solutions. Second, we show how to achieve universal composability in the trusted set-up model where all zero-knowledge proofs share the same system-wide parameters. Third, we derive a new protocol for multiplicative relations and show how to combine it with several crypto-computing frameworks.

Keywords

Universal composability conditional disclosure of secrets zero-knowledge homomorphic encryption multi-party computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AIR01]
    Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell sigital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. [BGN05]
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. [BHR12]
    Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Proc. of ACM CCS, pp. 784–796. ACM (2012)Google Scholar
  4. [BK04]
    Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Proc. of FOCS 2001, pp. 136–145. IEEE (2001)Google Scholar
  6. [CDS94]
    Cramer, R., Damgård, I., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  7. [CR03]
    Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. [DJ01]
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)Google Scholar
  9. [DPSZ12]
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. [EG85]
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)Google Scholar
  11. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proc. of STOC 2009, pp. 169–178. ACM (2009)Google Scholar
  12. [GHS12]
    Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. [GIKM98]
    Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in private information retrieval schemes. In: Proc. of STOC 1998, pp. 151–160. ACM (1998)Google Scholar
  14. [GMR89]
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)CrossRefMATHMathSciNetGoogle Scholar
  15. [GOS06]
    Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive Zaps and New Techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. [Gro10]
    Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. [IP07]
    Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. [LL07]
    Laur, S., Lipmaa, H.: A new protocol for conditional disclosure of secrets and its applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 207–225. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. [Lin03]
    Lindell, Y.: General composition and universal composability in secure multi-party computation. In: Proc. of FOCS 2003, pp. 394–403 (2003)Google Scholar
  20. [Pai99]
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. [SV11]
    Smart, N.P., Vercauteren, F.: Fully Homomorphic SIMD Operations. IACR Cryptology ePrint Archive, 2011:133 (2011)Google Scholar
  22. [SYY99]
    Sander, T., Young, A.L., Yung, M.: Non-Interactive CryptoComputing For NC1. In: Proc. of FOCS 1999, pp. 554–567. IEEE Computer Society (1999)Google Scholar
  23. [Yao82]
    Yao, A.C.-C.: Protocols for secure computations. In: Proc. of FOCS 1982, pp. 160–164. IEEE Computer Society (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sven Laur
    • 1
  • Bingsheng Zhang
    • 2
  1. 1.University of TartuEstonia
  2. 2.National and Kapodestrian University of AthensGreece

Personalised recommendations