Ultrafast Intersystem Crossing in SO2 and Nucleobases

  • Sebastian Mai
  • Martin Richter
  • Philipp Marquetand
  • Leticia González’s
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 162)


Mixed quantum-classical dynamics simulations show that intersystem crossing between singlet and triplet states in SO2 and in nucleobases takes place on an ultrafast timescale (few 100 fs), directly competing with internal conversion.


Potential Energy Surface Triplet State Internal Conversion Enol Tautomer Allowed Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. M. Marian, “Spin-orbit coupling and intersystem crossing in molecules,” WIREs Comput. Mol. Sci. 2, 187 (2012).Google Scholar
  2. 2.
    A. Cannizzo, F. van Mourik, W. Gawelda, G. Zgrablic, C. Bressler, and M. Chergui, “Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+,” Angew. Chem. 118, 3246 (2006).Google Scholar
  3. 3.
    I. Tavernelli, B. F. Curchod, and U. Rothlisberger, “Nonadiabatic molecular dynamics with solvent effects: A LR-TDDFT QM/MM study of ruthenium (II) tris (bipyridine) in water,” Chem. Phys. 391, 101 (2011).Google Scholar
  4. 4.
    L. Freitag and L. González, “Theoretical spectroscopy and photodynamics of a ruthenium nitrosyl complex,” Inorg. Chem. 53, 6415 (2014).Google Scholar
  5. 5.
    J. Cadet and P. Vigny, “The photochemistry of nucleic acids,” in “Bioorganic Photochemistry 1: Photochemistry and the Nucleic Acids,”, H. Morrison, ed. (Wiley-Interscience, 1990).Google Scholar
  6. 6.
    T. J. Penfold, R. Spesyvtsev, O. M. Kirkby, R. S. Minns, D. S. N. Parker, H. H. Fielding, and G. A. Worth, “Quantum dynamics study of the competing ultrafast intersystem crossing and internal conversion in the ‘channel 3’ region of benzene,” J. Chem. Phys. 137, 204310 (2012).Google Scholar
  7. 7.
    J. C. Tully, “Molecular dynamics with electronic transitions,” J. Chem. Phys. 93, 1061 (1990).Google Scholar
  8. 8.
    M. Richter, P. Marquetand, J. González-Vázquez, I. Sola, and L. González, “SHARC: Ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings,” J. Chem. Theory Comput. 7, 1253 (2011).Google Scholar
  9. 9.
    S. Mai, P. Marquetand, M. Richter, J. González-Vázquez, and L. González, “Singlet and triplet excited-state dynamics study of the keto and enol tautomers of cytosine,” ChemPhysChem 14, 2920 (2013).Google Scholar
  10. 10.
    G. Granucci, M. Persico, and G. Spighi, “Surface hopping trajectory simulations with spin-orbit and dynamical couplings,” J. Chem. Phys. 137, 22A501 (2012).Google Scholar
  11. 11.
    A. E. Douglas, “The Zeeman effect in the spectra of polyatomic molecules,” Can. J. Phys. 36, 147 (1958).Google Scholar
  12. 12.
    S. Mai, P. Marquetand, and L. González, “Non-adiabatic and intersystem crossings dynamics in SO2: II. The role of triplet states in the bound state dynamics studied by surface-hopping simulations,” J. Chem. Phys. 140, 204302 (2014).Google Scholar
  13. 13.
    I. Wilkinson, A. E. Boguslavskiy, J. Mikosch, D. M. Villeneuve, H.-J. Wörner, M. Spanner, S. Patchkovskii, and A. Stolow, “Non-adiabatic and intersystem crossing dynamics in SO2 I: Bound state relaxation studied by time-resolved photoelectron photoion coincidence spectroscopy,” J. Chem. Phys. 140 204301 (2014).Google Scholar
  14. 14.
    C. Lévêque, R. Taeb, and H. Köppel, “Communication: Theoretical prediction of the importance of the \( ^{3} B_{2} \) state in the dynamics of sulfur dioxide,” J. Chem. Phys. 140, 091101 (2014).Google Scholar
  15. 15.
    J. González-Vázquez and L. González, “A time-dependent picture of the ultrafast deactivation of keto-cytosine including three-state conical intersections,” ChemPhysChem 11, 3617 (2010).Google Scholar
  16. 16.
    J.-W. Ho, H.-C. Yen, W.-K. Chou, C.-N. Weng, L.-H. Cheng, H.-Q. Shi, S.-H. Lai, and P.-Y. Cheng, “Disentangling intrinsic ultrafast excited-state dynamics of cytosine tautomers,” J. Phys. Chem. A 115, 8406 (2011).Google Scholar
  17. 17.
    M. Richter, S. Mai, P. Marquetand, L. González: Phys. Chem. Chem. Phys. 16, 24423 (2014).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sebastian Mai
    • 1
  • Martin Richter
    • 1
  • Philipp Marquetand
    • 1
  • Leticia González’s
    • 1
  1. 1.Institute of Theoretical ChemistryUniversity of ViennaViennaAustria

Personalised recommendations