Advertisement

Direct Comparison of Multi-photon and EUV Single-Photon Probing of Molecular Relaxation Processes

  • T. J. A. Wolf
  • M. Koch
  • E. Sistrunk
  • J. Grilj
  • M. Gühr
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 162)

Abstract

We present a new setup for time-resolved photoelectron and photoion spectroscopy allowing for single-photon EUV or multi-photon NIR ionization. Comparison of the two different probe schemes reveals disagreements shedding light on the underlying advantages of different probes.

Keywords

High Harmonic Generation Molecular Excited State Intramolecular Vibrational Redistribution Photoion Spectroscopy Positive Time Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This material is based on work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Science, Chemical Sciences, Geosciences, and Biosciences Division. M. G. acknowledges funding via the Office of Science Early Career Research Program through the Office of Basic Energy Sciences, U.S. Department of Energy. T. W. acknowledges support from the German Academy of Sciences Leopoldina. M. K. acknowledges support form the Austrian Science Fund FWF (Schroedinger Grant) J3299-N20). J. G. acknowledges support from the European Commission under the Marie Curie Fellowship Programme.

References

  1. 1.
    Stolow, A, Underwood, J. G.: Time-Resolved Photoelectron Spectroscopy of Nonadiabatic Dynamics in Polyatomic Molecules., Advances in Chemical Physics 19, 497–587 (2008).Google Scholar
  2. 2.
    Hudock, H. R., Levine, B. G., Thompson, A. L., Satzger, H., Townsend, D., Gador, N., Ullrich, S., Stolow, A., Martínez, T. J.: Ab Initio Molecular Dynamics and Time-Resolved Photoelectron Spectroscopy of Electronically Excited Uracil and Thymine. J. Phys. Chem. A 111, 8500–8508 (2007).Google Scholar
  3. 3.
    Barbatti, M., Ullrich, S.: Ionization potentials of adenine along the internal conversion pathways. Phys. Chem. Chem. Phys. 13, 15492–15500 (2011).Google Scholar
  4. 4.
    Koch, M., Wolf, T. J. A., Grilj, J., Sistrunk, E., Gühr, M.: Femtosecond photoelectron and photoion spectrometer with vacuum ultraviolet probe pulses. arXiv:1404.3039 (2014).
  5. 5.
    Grilj, J., Sistrunk, E., Koch, M., Gühr, M.: A Beamline for Time-Resolved Extreme Ultraviolet and Soft X-Ray Spectroscopy. J. Anal. Bioanal. Tech. S12:005. (2014).Google Scholar
  6. 6.
    Kiba, T., Sato, S., Akimoto, S., Kasajima, T., Yamazaki, I: Solvent-assisted intramolecular vibrational energy redistribution of S1 perylene in ketone solvents. J. Photochem. Photobiol., A 178, 201–207 (2006).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • T. J. A. Wolf
    • 1
  • M. Koch
    • 2
  • E. Sistrunk
    • 1
  • J. Grilj
    • 3
  • M. Gühr
    • 1
  1. 1.Stanford PULSE InstituteSLAC National Accelerator LaboratoryMenlo ParkUSA
  2. 2.Stanford PULSE Institute and Institute of Experimental PhysicsGraz University of TechnologyGrazAustria, EU
  3. 3.Stanford PULSE Institute and Laboratoire de Spectroscopie UltrarapideEcole Polytechnique Federale de Lausanne EPFLLausanneSwitzerland

Personalised recommendations