Advertisement

On a Decidable Formal Theory for Abstract Continuous-Time Dynamical Systems

  • Ievgen Ivanov
  • Mykola Nikitchenko
  • Uri Abraham
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 469)

Abstract

We propose a decidable formal theory which describes high-level properties of abstract continuous-time dynamical systems called Nondeterministic Complete Markovian Systems (NCMS). NCMS is a rather general class of systems which can represent discrete and/or continuous evolutions in continuous time and which is sufficient for modeling a wide range of real-time information processing and cyber-physical systems (CPS). We illustrate the obtained results with a proof of the mutual exclusion property of a CPS which implements Peterson’s algorithm.

Keywords

Real-time system Cyber-physical system Dynamical system Continuous-time system Formal theory Decidability Verification 

Key Terms

Mathematical Model Specification Process Verification Process 

Notes

Acknowledgments

We would like to thank Dr. Martin Strecker and Prof. Louis Féraud of Institut de Recherche en Informatique de Toulouse (IRIT), France for the ideas which inspired this work.

References

  1. 1.
    Baheti, R., Gill, H.: Cyber-physical systems. In: Samad, T., Annaswamy, A. (eds.) The Impact of Control Technology, pp. 161–166. IEEE, New York (2011)Google Scholar
  2. 2.
    Lee, E.A., Seshia, S.A.: Introduction to embedded systems: a cyber-physical systems approach. Lulu.com (2013)Google Scholar
  3. 3.
    Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: 2011 International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6. IEEE (2011)Google Scholar
  4. 4.
    Sunder, S.S., et al. (originator): Cyber-physical systems - a concept map. http://cyberphysicalsystems.org/
  5. 5.
    Barbashin, E.: Introduction to Stability Theory. Nauka (in Russian), Moscow (1967)Google Scholar
  6. 6.
    Emelyanov, S.: Variable Structure Systems. Nauka (in Russian), Moscow (1967)Google Scholar
  7. 7.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Communications and Control Engineering. Springer, Heidelberg (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Samoilenko, A., Perestyuk, N.: Impulsive Differential Equations. World Scientific, Singapore and River Edge (1995)zbMATHGoogle Scholar
  9. 9.
    Lakshmikantham, V., Banov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific Publishing Company, Singapore (1989)CrossRefzbMATHGoogle Scholar
  10. 10.
    Filippov, A.: Differential Equations with Discontinuous Righthand Sides: Control Systems. Mathematics and Its Applications. Springer, New York (1988)CrossRefGoogle Scholar
  11. 11.
    Liberzon, D.: Switching in Systems and Control. Systems & Control: Foundations & Applications. Birkhauser Boston Inc., Boston (2003)CrossRefzbMATHGoogle Scholar
  12. 12.
    Witsenhausen, H.: A class of hybrid-state continuous-time dynamic systems. IEEE Trans. Autom. Control 11, 161–167 (1966)CrossRefGoogle Scholar
  13. 13.
    Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. Theor. Methods Appl. 11, 665–683 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, controllability, observability. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 317–356. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  15. 15.
    Branicky, M.S.: Studies in hybrid systems: modeling, analysis, and control. Ph.D. thesis, Massachusetts Institute of Technology (1995)Google Scholar
  16. 16.
    Goebel, R., Sanfelice, R.G., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29, 28–93 (2009)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  18. 18.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoret. Comput. Sci. 138, 3–34 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of Eleventh Annual IEEE Symposium Logic in Computer Science LICS ’96, pp. 278–292 (1996)Google Scholar
  20. 20.
    Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker, J.W., Huizing, C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 447–484. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  21. 21.
    Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–88. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Lynch, N., Segala, R., Vaandrager, F.: Hybrid i/o automata. Inf. Comput. 185, 105–157 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: POPL, pp. 173–183. ACM Press (1986)Google Scholar
  24. 24.
    Rabinovich, A.: On the decidability of continuous time specification formalisms. J. Logic Comput. 8, 669–678 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results for duration calculus. In: Enjalbert, P., Wagner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  26. 26.
    Li, X.: Decidability of mean value calculus. J. Comp. Sci. Tech. 14, 173–180 (1999)CrossRefzbMATHGoogle Scholar
  27. 27.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput. 20, 309–352 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41, 143–189 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Rabinovich, A.: On translations of temporal logic of actions into monadic second order logic. Theoret. Comput. Sci. 193, 197–214 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Bellini, P., Mattolini, R., Nesi, P.: Temporal logics for real-time system specification. ACM Comput. Surv. 32, 12–42 (2000)CrossRefGoogle Scholar
  32. 32.
    Hirshfeld, Y., Rabinovich, A.: Logics for real time: decidability and complexity. Fundam. Inf. 62, 1–28 (2004)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Int. J. Robust Nonlinear Control 11, 435–451 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Birkhoff, G.D.: Dynamical Systems. American Mathematical Society, New York (1927)zbMATHGoogle Scholar
  35. 35.
    Nemytskii, V., Stepanov, V.: Qualitative Theory of Differential Equations. GITTL (in Russian), Moscow (1949)Google Scholar
  36. 36.
    Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics. American Mathematical Society Colloquium Publications, New York (1955)zbMATHGoogle Scholar
  37. 37.
    Roxin, E.: Local definition of generalized control systems. Mich. Math. J. 13, 91–96 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Hájek, O.: Theory of processes, I. Czech. Math. J. 17, 159–199 (1967)Google Scholar
  39. 39.
    Sell, G.R.: Differential equations without uniqueness and classical topological dynamics. J. Differ. Equ. 14, 42–56 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Kloeden, P.E.: General control systems. In: Coppel, W.A. (ed.) Mathematical Control Theory. Lecture Notes in Mathematics, vol. 680, pp. 119–137. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  41. 41.
    Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. Pure & Applied Mathematics S. McGraw-Hill Education, New York (1969)zbMATHGoogle Scholar
  42. 42.
    Mesarovic, M.D., Takahara, Y.: Abstract Systems Theory. Lecture Notes in Control and Information Sciences. Springer, Heidelberg (1989)CrossRefzbMATHGoogle Scholar
  43. 43.
    Matrosov, V.M., Anapolskiy, L., Vasilyev, S.: The Method of Comparison in Mathematical Systems Theory. Nauka (in Russian), Novosibirsk (1980)Google Scholar
  44. 44.
    Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Autom. Control 36, 259–294 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Bushaw, D.: Dynamical polysystems and optimisation. J. Differ. Equ. 2, 351–356 (1963)MathSciNetGoogle Scholar
  46. 46.
    Movchan, A.: Stability of processes in two metrics. Applied Math. Mech. (in Russian) 24, 988–1001 (1960)Google Scholar
  47. 47.
    Hájek, O.: Theory of processes, II. Czech. Math. J. 17, 372–398 (1967)Google Scholar
  48. 48.
    Ivanov, I.: A criterion for existence of global-in-time trajectories of non-deterministic Markovian systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2012. CCIS, vol. 347, pp. 111–130. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  49. 49.
    Ivanov, I.: On existence of total input-output pairs of abstract time systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G. (eds.) ICTERI 2013. CCIS, vol. 412, pp. 308–331. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  50. 50.
    Ivanov, I.: An abstract block formalism for engineering systems. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A., Zholtkevych, G., Zavileysky, M., Kravtsov, H., Kobets, V., Peschanenko, V.S. (eds.) ICTERI. CEUR Workshop Proceedings, vol. 1000, pp. 448–463. CEUR-WS.org (2013)Google Scholar
  51. 51.
    Rabin, M.: Decidability of second-order theories and automata on infinite trees. Trans. AMS 141, 1–35 (1969)zbMATHMathSciNetGoogle Scholar
  52. 52.
    Abraham, U., Ivanov, I., Nikitchenko, M.: Proving behavioral properties of distributed algorithms using their compositional semantics. In: Proceedings of the First International Seminar Specification and Verification of Hybrid Systems, 10–12 October 2011, Taras Shevchenko National University of Kyiv, pp. 9–19 (2011)Google Scholar
  53. 53.
    Luke, J. (originator): Sorgenfrey topology. Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Sorgenfrey_topology

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ievgen Ivanov
    • 1
    • 2
  • Mykola Nikitchenko
    • 1
  • Uri Abraham
    • 3
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Paul Sabatier UniversityToulouseFrance
  3. 3.Ben-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations