Bounded Model Checking for Weighted Interpreted Systems and for Flat Weighted Epistemic Computation Tree Logic

  • Bożena Woźna-Szcześniak
  • Ireneusz Szcześniak
  • Agnieszka M. Zbrzezny
  • Andrzej Zbrzezny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8861)


The paper deals with the SAT- and ROBDD-based bounded model checking (BMC) methods for the existential fragment of a flat weighted epistemic computation tree logic (FWECTLK) interpreted over weighted interpreted systems. We implemented the both BMC algorithms, and compared them with each other on several benchmarks for multi-agent systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biere, A.: PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and Computation 4, 75–97 (2008)zbMATHGoogle Scholar
  2. 2.
    Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transaction on Computers 35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  3. 3.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)Google Scholar
  4. 4.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press (1995)Google Scholar
  5. 5.
    Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Huth, M.R.A., Ryan, M.D.: Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press (2000)Google Scholar
  7. 7.
    Jones, A.V., Lomuscio, A.: Distributed BDD-based BMC for the verification of multi-agent systems. In: Proc. of AAMAS 2010, pp. 675–682. IFAAMAS (2010)Google Scholar
  8. 8.
    Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verification of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75(1), 63–92 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Męski, A., Woźna-Szcześniak, B.z., Zbrzezny, A.M., Zbrzezny, A.: Two approaches to bounded model checking for a soft real-time epistemic computation tree logic. In: Omatu, S., Neves, J., Rodriguez, J.M.C., Paz Santana, J.F., Gonzalez, S.R. (eds.) Distrib. Computing & Artificial Intelligence. AISC, vol. 217, pp. 483–491. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Męski, A., Penczek, W., Szreter, M., Woźna-Szcześniak, B., Zbrzezny, A.: BDD- versus SAT-based bounded model checking for the existential fragment of linear temporal logic with knowledge: algorithms and their performance. Autonomous Agents and Multi-Agent Systems 28(4), 558–604 (2014)CrossRefGoogle Scholar
  12. 12.
    Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Raimondi, F.: Model Checking Multi-Agent Systems. PhD thesis, UCL (2006)Google Scholar
  14. 14.
    Wooldridge, M.: An introduction to multi-agent systems, 2nd edn. John Wiley & Sons (2009)Google Scholar
  15. 15.
    Woźna-Szcześniak, B.: SAT-based bounded model checking for weighted deontic interpreted systems. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 444–455. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Woźna-Szcześniak, B., Zbrzezny, A.M., Zbrzezny, A.: SAT-based bounded model checking for weighted interpreted systems and weighted linear temporal logic. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS, vol. 8291, pp. 355–371. Springer, Heidelberg (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Bożena Woźna-Szcześniak
    • 1
  • Ireneusz Szcześniak
    • 2
  • Agnieszka M. Zbrzezny
    • 1
  • Andrzej Zbrzezny
    • 1
  1. 1.IMCS, Jan Długosz UniversityCzȩstochowaPoland
  2. 2.Department of TelecommunicationsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations