Leximin Multiple Objective Optimization for Preferences of Agents

  • Toshihiro Matsui
  • Marius Silaghi
  • Katsutoshi Hirayama
  • Makoto Yokoo
  • Hiroshi Matsuo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8861)


We address a variation of Multiple Objective Distributed Constraint Optimization Problems (MODCOPs). In the conventional MODCOPs, a few objectives are globally defined and agents cooperate to find the Pareto optimal solution. On the other hand, in several practical problems, the share of each agent is important. Such shares are represented as preference values of agents. This class of problems is defined as the MODCOP on the preferences of agents. Particularly, we focus on the optimization problems based on the leximin ordering (Leximin AMODCOPs), which improves the equality among agents. The solution methods based on pseudo trees are applied to the Leximin AMODCOPs.


leximin preference multiple objectives Distributed Constraint Optimization multiagent cooperation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouveret, S., Lemaître, M.: Computing leximin-optimal solutions in constraint networks. Artificial Intelligence 173(2), 343–364 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Delle Fave, F.M., Stranders, R., Rogers, A., Jennings, N.R.: Bounded decentralised coordination over multiple objectives. In: 10th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 371–378 (2011)Google Scholar
  3. 3.
    Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: 7th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 639–646 (2008)Google Scholar
  4. 4.
    Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., Meisels, A.: Asymmetric distributed constraint optimization problems. Journal of Artificial Intelligence Research 47, 613–647 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26, 369–395 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Matsui, T., Matsuo, H.: Considering equality on distributed constraint optimization problem for resource supply network. In: 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology, vol. 2, pp. 25–32 (2012)Google Scholar
  7. 7.
    Matsui, T., Silaghi, M., Hirayama, K., Yokoo, M., Matsuo, H.: Distributed search method with bounded cost vectors on multiple objective dCOPs. In: Rahwan, I., Wobcke, W., Sen, S., Sugawara, T. (eds.) PRIMA 2012. LNCS, vol. 7455, pp. 137–152. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of distributed constraints processing algorithms. In: 3rd International Workshop on Distributed Constraint Reasoning (2002)Google Scholar
  9. 9.
    Miller, S., Ramchurn, S.D., Rogers, A.: Optimal decentralised dispatch of embedded generation in the smart grid. In: 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 281–288 (2012)Google Scholar
  10. 10.
    Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: Asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence 161(1-2), 149–180 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press, Cambridge (1988)CrossRefzbMATHGoogle Scholar
  12. 12.
    Netzer, A., Meisels, A.: SOCIAL DCOP - Social Choice in Distributed Constraints Optimization. In: 5th International Symposium on Intelligent Distributed Computing, pp. 35–47 (2011)Google Scholar
  13. 13.
    Netzer, A., Meisels, A.: Distributed Envy Minimization for Resource Allocation. In: 5th International Conference on Agents and Artificial Intelligence, vol. 1, pp. 15–24 (2013)Google Scholar
  14. 14.
    Netzer, A., Meisels, A.: Distributed Local Search for Minimizing Envy. In: 2013 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 53–58 (2013)Google Scholar
  15. 15.
    Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: IJCAI 2005, pp. 266–271 (2005)Google Scholar
  16. 16.
    Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate decentralised coordination via the Max-Sum algorithm. Artificial Intelligence 175(2), 730–759 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sen, A.K.: Choice, Welfare and Measurement. Harvard University Press (1997)Google Scholar
  18. 18.
    Ueda, S., Iwasaki, A., Yokoo, M., Silaghi, M., Hirayama, K., Matsui, T.: Coalition structure generation based on distributed constraint optimization (2010)Google Scholar
  19. 19.
    Vinyals, M., Rodriguez-Aguilar, J.A., Cerquides, J.: Constructing a unifying theory of dynamic programming dcop algorithms via the generalized distributive law. Autonomous Agents and Multi-Agent Systems 22(3), 439–464 (2011)CrossRefGoogle Scholar
  20. 20.
    Yeoh, W., Felner, A., Koenig, S.: Bnb-adopt: an asynchronous branch-and-bound dcop algorithm. In: 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, pp. 591–598 (2008)Google Scholar
  21. 21.
    Zivan, R.: Anytime local search for distributed constraint optimization. In: AAAI 2008, pp. 393–398 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Toshihiro Matsui
    • 1
  • Marius Silaghi
    • 2
  • Katsutoshi Hirayama
    • 3
  • Makoto Yokoo
    • 4
  • Hiroshi Matsuo
    • 1
  1. 1.Nagoya Institute of TechnologyShowa-kuJapan
  2. 2.Florida Institute of TechnologyMelbourneUSA
  3. 3.Kobe UniversityKobeJapan
  4. 4.Kyushu UniversityFukuokaJapan

Personalised recommendations