Advertisement

Assumption-Based Argumentation Equipped with Preferences

  • Toshiko Wakaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8861)

Abstract

The existing approaches which map the given explicit preferences into standard assumption-based argumentation frameworks (ABAs) reveal some difficulties such as generating a huge number of rules and so on. To overcome them, we present an assumption-based argumentation framework equipped with preferences (p_ABA). It increases the expressive power of ABA by incorporating preferences between sentences into the framework. The semantics of p_ABAs is given by \(\mathcal{P}\) extensions selected from extensions of ABAs based on the given sentence ordering. The advantages of our approach are that not only it enables us to express different kinds of preferences such as preferences over rules, over goals, over decisions by means of sentence orderings in p_ABAs but we also successfully obtain solutions from \(\mathcal{P}\) extensions of the p_ABAs expressing the respective knowledge for various applications such as epistemic reasoning, practical reasoning, decision-making with preferences and so on in a uniform way without suffering from difficulties of existing ones.

Keywords

Logic Program Logic Programming Stable Model Argumentation Framework Epistemic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amgoud, L., Cayrol, C.: On the acceptability of arguments in preference-based argumentation. In: Proceedings of UAI 1998, pp. 1–7 (1998)Google Scholar
  2. 2.
    Amgoud, L., Vesic, S.: Repairing preference-based argumentation frameworks. In: Proceedings of IJCAI 2009, pp. 665–670 (2009)Google Scholar
  3. 3.
    Bench-Capon, T.J.M.: Persuasion in practical argument using value-based argumentation frameworks. J. Logic Comput. 13(3), 429–448 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bench-Capon, T.J.M., Prakken, H.: Justifying actions by accruing arguments. In: Proceedings of COMMA 2006, pp. 247–258 (2006)Google Scholar
  5. 5.
    Bondarenko, A., Toni, F., Kowalski, R.A.: Assumption-Based framework for non-monotonic reasoning. In: Proceedings of LPNMR 1993, pp. 171–189 (1993)Google Scholar
  6. 6.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93, 63–101 (1997)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J.P., Woltran, S.: Abstract Dialectical Frameworks Revisited. In: Proceedings of IJCAI 2013, pp. 803–809 (2013)Google Scholar
  8. 8.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial Intelligence 171(5-6), 286–310 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Caminada, M., Sa, S., Alcantara, J., Dvorak, W.: On the difference between assumption-based argumentation and abstract argumentation. In: Proceedings of BNAIC 2013, pp. 25–32 (2013)Google Scholar
  10. 10.
    Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A Classification and survey of preference handling approaches in nonmonotonic reasoning. Computational Intelligence 20(2), 308–334 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence 77, 321–357 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 199–218. Springer (2009)Google Scholar
  13. 13.
    Dung, P.M., Thang, P.M.: Closure and consistency rationalities in logic-based argumentation. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 33–43. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artificial Intelligence 141, 187–203 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Eiter, T., Gottlob, G.: Complexity results for disjunctive logic programming and application to nonmonotonic logics. In: Proceedings of ILPS 1993, pp. 266–278 (1993)Google Scholar
  16. 16.
    Modgil, S.: Reasoning about preferences in argumentation frameworks. Artificial Intelligence 173, 901–934 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Fan, X., Craven, R., Singer, R., Toni, F., Williams, M.: Assumption-based argumentation for Decision-Making with preferences: A Medical Case Study. In: Leite, J., Son, T.C., Torroni, P., van der Torre, L., Woltran, S. (eds.) CLIMA XIV 2013. LNCS, vol. 8143, pp. 374–390. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Gaertner, D., Toni, F.: CaSAPI: a system for credulous and sceptical argumentation. In: Proceedings of ArgNMR (2007)Google Scholar
  19. 19.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of ICLP/SLP 1998, pp. 1070–1080. MIT Press (1988)Google Scholar
  20. 20.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  21. 21.
    Prakken, H.: An abstract framework for argumentation with structured arguments. Argumentation and Computation 1, 93–124 (2010)CrossRefGoogle Scholar
  22. 22.
    Prakken, H.: Some Reflections on Two Current Trends in Formal Argumentation. In: Artikis, A., Craven, R., Kesim Çiçekli, N., Sadighi, B., Stathis, K. (eds.) Sergot Festschrift 2012. LNCS, vol. 7360, pp. 249–272. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J. Log. Comput. 5(3), 265–285 (1995)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Sakama, C., Inoue, K.: Prioritized logic programming and its application to commonsense reasoning. Artificial Intelligence 123, 185–222 (2000)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Toni, F.: Assumption-based argumentation for closed and consistent defeasible reasoning. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.) JSAI 2007. LNCS (LNAI), vol. 4914, pp. 390–402. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Toni, F.: Assumption-based argumentation for selection and composition of services. In: Sadri, F., Satoh, K. (eds.) CLIMA VIII 2007. LNCS (LNAI), vol. 5056, pp. 231–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Toni, F.: Assumption-based argumentation for epistemic and practical reasoning. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 185–202. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Toni, F.: A tutorial on assumption-based argumentation. Argument and Computation 5(1), 89–117 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wakaki, T., Nitta, K.: Computing argumentation semantics in answer set programming. In: Proceedings of JURISIN 2008, pp. 32–41 (2008), the revised version is in Hattori, H., Kawamura, T., Idé, T., Yokoo, M., Murakami, Y. (eds.) JSAI 2008. LNCS, vol. 5447, pp. 254–269. Springer, Heidelberg (2009)Google Scholar
  30. 30.
    Wakaki, T.: Preference-based argumentation capturing prioritized logic programming. In: McBurney, P., Rahwan, I., Parsons, S. (eds.) ArgMAS 2010. LNCS, vol. 6614, pp. 306–325. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Wakaki, T.: Preference-based argumentation built from prioritized logic programming. Journal of Logic and Computation (2013), doi:10.1093/logcom/exs066Google Scholar
  32. 32.
    Wakaki, T., Tatsuzawa, M.: Computing preference-based argumentation in answer set programming. In: Proceedings of JURISIN 2013 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Toshiko Wakaki
    • 1
  1. 1.Shibaura Institute of TechnologySaitama-cityJapan

Personalised recommendations