Cancer Based Pharmacogenomics Network for Drug Repurposing

  • Liwei Wang
  • Hongfang Liu
  • Christopher G. Chute
  • Qian Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8643)

Abstract

Pharmacogenomics (PGx) as an emerging field, is poised to change the way we practice medicine and deliver health care by customizing drug therapies on the basis of each patient’s genetic makeup. A large volume of PGx data including information on relationships among drugs, genes, and single nucleotide polymorphisms (SNPs) has been accumulated. Normalized and integrated PGx information could facilitate revelation of hidden relationships among drug treatments, genomic variations, and phenotype traits to better support drug discovery and next generation of treatment. In this study, we constructed a normalized cancer based PGx network (CPN) by integrating cancer orientated PGx information from multiple well known PGx resources including the Pharmacogenomics Knowledge Base (PharmGKB), the FDA Pharmacogenomic Biomarkers in Drug Labeling, and the Catalog of Published Genome-Wide Association Studies. The ultimate goal of the CPN is to provide comprehensive cancer specific PGx information to support oncology related research, including cancer based drug discovery – drug repurposing. We have successfully demonstrated the capability of the CPN for drug repurposing by conducting two case studies.

Keywords

Pharmacogenomics Cancer Network Drug repurposing 

Notes

Acknowledgement

This work was supported by the Pharmacogenomic Research Network (NIH/NIGMS-U19 GM61388).

References

  1. 1.
    Hewett, M., Oliver, D.E., Rubin, D.L., et al.: PharmGKB: The pharmacogenetics knowledge base. Nucleic Acids Res. 30(1), 163–165 (2002)CrossRefGoogle Scholar
  2. 2.
    Fu, B., Brennan, R., O’Sullivan, D.: A configurable translation-based cross-lingual ontology mapping system to adjust mapping outcomes. Web Semant. Sci. Serv. Agents World Wide Web 15, 15–36 (2012)CrossRefGoogle Scholar
  3. 3.
    Lipson, D., Capelletti, M., Yelensky, R., et al.: Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 18(3), 382–384 (2012)CrossRefGoogle Scholar
  4. 4.
    Kreso, A., O’Brien, C.A., van Galen, P., et al.: Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119), 543–548 (2013)CrossRefGoogle Scholar
  5. 5.
    Coulet, A., Smail-Tabbone M., Napoli, A., Devignes, M.D.: Suggested ontology for pharmacogenomics (SO-Pharm): Modular construction and preliminary testing. In: Proceedings of the Wokshop on Knowledge Systems in Bioinformatics, 29 October 2006Google Scholar
  6. 6.
    Dumontier, M., Villanueva-Rosales, N.: Towards pharmacogenomics knowledge discovery with the semantic web. Briefings Bioinform. 10(2), 153–163 (2009)CrossRefGoogle Scholar
  7. 7.
    McGuinness, D.L., Van Harmelen, F.: OWL web ontology language overview. W3C recommendation, vol. 10, pp. 2004–03 (2004)Google Scholar
  8. 8.
    Coulet, A., Smaïl-Tabbone, M., Napoli, A., Devignes, M.-D.: Suggested ontology for pharmacogenomics (SO-Pharm): Modular construction and preliminary testing. Paper presented at: On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops2006Google Scholar
  9. 9.
    FDA Table of Pharmacogenomic Biomarkers in Drug Labeling. http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Accessed 14 Jan 2014
  10. 10.
    Kumar, S.K., Harding, J.: Ontology mapping using description logic and bridging axioms. Comput. Ind. 64, 19–28 (2012)CrossRefGoogle Scholar
  11. 11.
    Frueh, F.W., Amur, S., Mummaneni, P., et al.: Pharmacogenomic biomarker information in drug labels approved by the United States food and drug administration: prevalence of related drug use. Pharmacother. J. Hum. Pharmacol. Drug Therapy 28(8), 992–998 (2008)CrossRefGoogle Scholar
  12. 12.
    Hindorff, L.A., MJEBI, Morales, J., Junkins, H.A., Hall, P.N., Klemm, A.K., Manolio, T.A.: A Catalog of published genome-wide association studies. www.genome.gov/gwastudies. Accessed 14 Jan 2014
  13. 13.
    National Cancer Institute. http://www.cancer.gov/cancertopics/types/alphalist. Accessed 14 Jan 2014
  14. 14.
    The Pharmcogenomics Knowledgebase. http://www.pharmgkb.org/. Accessed 14 Jan 2014
  15. 15.
    Whetzel, P.L., Noy, N.F., Shah, N.H., et al.: BioPortal: Enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res. 39(suppl 2), W541–W545 (2011)CrossRefGoogle Scholar
  16. 16.
    National Center for Biomedical Ontology Rest Service. http://data.bioontology.org/documentation. Accessed 14 Jan 2014
  17. 17.
    Bos, L.: SNOMED-CT: The advanced terminology and coding system for eHealth. Med. Care Compunetics 3 121, 279 (2006)Google Scholar
  18. 18.
    Nelson, S.J., Zeng, K., Kilbourne, J., Powell, T., Moore, R.: Normalized names for clinical drugs: RxNorm at 6 years. J. Am. Med. Inform. Assoc. 18(4), 441–448 (2011)CrossRefGoogle Scholar
  19. 19.
    Gardiner, K.: Human genome organization. Curr. Opin. Genet. Dev. 5(3), 315–322 (1995)CrossRefGoogle Scholar
  20. 20.
    Sayers, E.W., Barrett, T., Benson, D.A., et al.: Database resources of the national center for biotechnology information. Nucleic Acids Res. 39(suppl 1), D38–D51 (2011)CrossRefGoogle Scholar
  21. 21.
    Coletti, M.H., Bleich, H.L.: Medical subject headings used to search the biomedical literature. J. Am. Med. Inform. Assoc. 8(4), 317–323 (2001)CrossRefGoogle Scholar
  22. 22.
    Bodenreider, O.: The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Res. 32(suppl 1), D267–D270 (2004)CrossRefGoogle Scholar
  23. 23.
    Saito, R., Smoot, M.E., Ono, K., et al.: A travel guide to Cytoscape plugins. Nat. Methods 9(11), 1069–1076 (2012)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Stankova, J., Shang, J., Rozen, R.: Antisense inhibition of methylenetetrahydrofolate reductase reduces cancer cell survival in vitro and tumor growth in vivo. Clin. Cancer Res. 11(5), 2047–2052 (2005)CrossRefGoogle Scholar
  26. 26.
    Elhawary, N.A., Hewedi, D., Arab, A., et al.: The MTHFR 677T allele may influence the severity and biochemical risk factors of Alzheimer’s disease in an Egyptian population. Dis. Mark. 35(5), 439–446 (2013)CrossRefGoogle Scholar
  27. 27.
    Mansouri, L., Fekih-Mrissa, N., Klai, S., Mansour, M., Gritli, N., Mrissa, R.: Association of methylenetetrahydrofolate reductase polymorphisms with susceptibility to Alzheimer’s disease. Clin. Neurol. Neurosurg. 115(9), 1693–1696 (2013)CrossRefGoogle Scholar
  28. 28.
    Shemesh, O.A., Spira, M.E.: Rescue of neurons from undergoing hallmark tau-induced Alzheimer’s disease cell pathologies by the antimitotic drug paclitaxel. Neurobiol. Dis. 43(1), 163–175 (2011)CrossRefGoogle Scholar
  29. 29.
    Zhang, B., Maiti, A., Shively, S., et al.: Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl. Acad. Sci. U.S.A. 102(1), 227–231 (2005)CrossRefGoogle Scholar
  30. 30.
    Drug label of Capecitabine in DailyMed. http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=a1de8bba-3b1d-4c9d-ab8a-32d2c05e67c8. Accessed 14 Jan 2014
  31. 31.
    Dong, N., Yu, J., Wang, C., et al.: Pharmacogenetic assessment of clinical outcome in patients with metastatic breast cancer treated with docetaxel plus capecitabine. J. Cancer Res. Clin. Oncol. 138(7), 1197–1203 (2012)CrossRefGoogle Scholar
  32. 32.
    Androutsopoulos, V.P., Spyrou, I., Ploumidis, A., et al.: Expression Profile of CYP1A1 and CYP1B1 Enzymes in Colon and Bladder Tumors. PLoS ONE 8(12), e82487 (2013)CrossRefGoogle Scholar
  33. 33.
    Patel, B., Forman, J., Fontana, J., Frazier, A., Pontes, E., Vaishampayan, U.: A single institution experience with concurrent capecitabine and radiation therapy in weak and/or elderly patients with urothelial cancer. Int. J. Radiat. Oncol. Biol. Phys. 62(5), 1332–1338 (2005)CrossRefGoogle Scholar
  34. 34.
    Michels, J., Barbour, S., Cavers, D., Chi, K.N.: Metastatic signet-ring cell cancer of the bladder responding to chemotherapy with capecitabine: Case report and review of literature. Can. Urol. Assoc. J. 4(2), E55 (2010)Google Scholar
  35. 35.
    Wishart, D.S., Knox, C., Guo, A.C., et al.: DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34(suppl 1), D668–D672 (2006)CrossRefGoogle Scholar
  36. 36.
    Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)CrossRefGoogle Scholar
  37. 37.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web (1999)Google Scholar
  38. 38.
    Zhu, Q., Freimuth, R.R., Pathak, J., Durski, M.J., Chute, C.G.: Disambiguation of PharmGKB drug-disease relations with NDF-RT and SPL. J. Biomed. Inform. 46(4), 690–696 (2013)CrossRefGoogle Scholar
  39. 39.
    Jiang, G., Solbrig, H.R., Chute, C.G.: ADEpedia: a scalable and standardized knowledge base of Adverse Drug Events using semantic web technology. Paper presented at: AMIA Annual Symposium Proceedings (2011)Google Scholar
  40. 40.
    Hassanzadeh, O., Zhu Q, Freimuth, R., Boyce, R.: Extending the “Web of Drug Identity” with Knowledge Extracted from United States Product Labels. Submitted to AMIA Summit on Clinical Research Informatics (2013)Google Scholar
  41. 41.
    Chowdhury, G.G.: Natural language processing. Ann. Rev. Inf. Sci. Technol. 37(1), 51–89 (2003)CrossRefGoogle Scholar
  42. 42.
    Shenoy, M.K., Shet, K., Acharya, D.U.: Semantic Web Technologies (2010)Google Scholar
  43. 43.
    Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (RDF): Concepts and abstract syntax, W3C recommendation, p. 10 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Liwei Wang
    • 1
  • Hongfang Liu
    • 2
  • Christopher G. Chute
    • 2
  • Qian Zhu
    • 3
  1. 1.Department of Medical InformaticsSchool of Public Health, Jilin UniversityChangchunChina
  2. 2.Department of Health Science ResearchMayo ClinicRochesterUSA
  3. 3.Department of Information SystemsUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations