Advertisement

Three-way Indexing ZDDs for Large-Scale Sparse Datasets

  • Hiroshi Aoki
  • Takahisa Toda
  • Shin-ichi Minato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8643)

Abstract

Zero-suppressed decision diagrams (ZDDs) are a data structure for representing combinations over item sets. They have been applied to many areas such as data mining. When ZDDs represent large-scale sparse datasets, they tend to obtain an unbalanced form, which results performance degradation. In this paper, we propose a new data structure three-way indexing ZDD, as a variant of ZDDs. We furthermore present algorithms to convert between three-way indexing ZDDs and ordinary ZDDs. Experimental results show the effectiveness of our data structure and algorithms.

Keywords

ZDD Zero-suppressed binary decision diagram Ternary search tree Membership query 

References

  1. 1.
    Goethals, B.: Survey on frequent pattern mining. Technical report (2002)Google Scholar
  2. 2.
    Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: DAC ’93: Proceedings of the 30th International Design Automation Conference, pp. 272–277. ACM, New York (1993)Google Scholar
  3. 3.
    Minato, S., Uno, T., Arimura, H.: LCM over ZBDDs: fast generation of very large-scale frequent itemsets using a compact graph-based representation. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 234–246. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Minato, S.: A fast algorithm for cofactor implication checking and its application for knowledge discovery. In: Proceedings of IEEE 8th International Conference on Computer and Information Technology, July 2008, pp. 53–58 (2008)Google Scholar
  5. 5.
    Minato, S.: Finding simple disjoint decompositions in frequent itemset data using zero-suppressed BDDs. In: Proceedings of IEEE ICDM 2005 Workshop on Computational Intelligence in Data Mining, November 2005, pp. 3–11 (2005)Google Scholar
  6. 6.
    Minato, S., Ito, K.: Symmetric item set mining method using zero-suppressed BDDs and application to biological data. Trans. Jpn. Soc. Artif. Intell. 22(2), 156–164 (2007)CrossRefGoogle Scholar
  7. 7.
    Coudert, O.: Solving graph optimization problems with ZBDDs. In: Proceedings of the 1997 European Conference on Design and Test, March 1997, pp. 224–228 (1997)Google Scholar
  8. 8.
    Loekito, E., Bailey, J.: Fast mining of high dimensional expressive contrast patterns using zero-suppressed binary decision diagrams. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 307–316. ACM (2006)Google Scholar
  9. 9.
    Minato, S.: Techniques of BDD/ZDD: brief history and recent activity. IEICE Trans. Inf. Syst. E96-D(7), 1419–1429 (2013)Google Scholar
  10. 10.
    Minato, S.-I.: Z-Skip-Links for fast traversal of ZDDs representing large-scale sparse datasets. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 731–742. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Bentley, J.L., Sedgewick, R.: Fast algorithms for sorting and searching strings. In: Proceedings of 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’97), January 1997, pp. 360–369 (1997)Google Scholar
  12. 12.
    Knuth, D.E.: The Art of Computer Programming, vol. 4a. Addison-Wesley Professional, New Jersey (2011)Google Scholar
  13. 13.
    Bentley, J.L., Saxe, J.B.: Algorithms on vector sets. SIGACT News 11(2), 36–39 (1979)CrossRefGoogle Scholar
  14. 14.
    Toda, T.: Fast compression of large-scale hypergraphs for solving combinatorial problems. In: Fürnkranz, J., Hüllermeier, E., Higuchi, T. (eds.) DS 2013. LNCS, vol. 8140, pp. 281–293. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hiroshi Aoki
    • 1
  • Takahisa Toda
    • 2
  • Shin-ichi Minato
    • 1
    • 3
  1. 1.Graduate School of Information Science and TechnologyHokkaido UniversitySapporoJapan
  2. 2.Graduate School of Information SystemsUniversity of Electro-CommunicationsChofuJapan
  3. 3.ERATO MINATO Discrete Structure Manipulation System ProjectJapan Science and Technology Agency, Hokkaido UniversitySapporoJapan

Personalised recommendations