Agent-Based Content Retrieval for Opportunistic Content-Centric Networks

  • Carlos Anastasiades
  • Wafaa El Maudni El Alami
  • Torsten Braun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8458)


In this paper, we describe agent-based content retrieval for opportunistic networks, where requesters can delegate content retrieval to agents, which retrieve the content on their behalf. The approach has been implemented in CCNx, the open source CCN framework, and evaluated on Android smart phones. Evaluations have shown that the overhead of agent delegation is only noticeable for very small content. For content larger than 4MB, agent-based content retrieval can even result in a throughput increase of 20% compared to standard CCN download applications. The requester asks every probe interval for agents that have retrieved the desired content. Evaluations have shown that a probe interval of 30s delivers the best overall performance in our scenario because the number of transmitted notification messages can be decreased by up to 80% without significantly increasing the download time.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caesar, M., Condie, T., Kannan, J., Lakshminarayanan, K.: ROFL: Routing on Flat Labels. In: ACM SIGCOMM, Pisa, Italy, pp. 363–374 (September 2006)Google Scholar
  2. 2.
    Koponen, T., Chawla, M., Chun, B.G., Ermolinskiy, A., Kim, K.H., Shenker, S., Stoica, I.: A Data-Oriented (and Beyond) Network Architecture. In: ACM SIGCOMM, Kyoto, Japan, pp. 181–192 (August 2007)Google Scholar
  3. 3.
    Särelä, M., Rinta-aho, T., Tarkoma, S.: RTFM: Publish/Subscribe Internetworking Architecture. In: ICT-Mobile Summit, Stockholm, Sweden, pp. 1–8 (June 2008)Google Scholar
  4. 4.
    Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Network Named Content. In: 5th ACM CoNEXT, Rome, Italy, pp. 1–12 (December 2009)Google Scholar
  5. 5.
    Anastasiades, C., Uruqi, A., Braun, T.: Content Discovery in Opportunistic Content-Centric Networks. In: 5th IEEE WASA-NGI, Clearwater, FL, USA, pp. 1048–1056 (October 2012)Google Scholar
  6. 6.
    Anastasiades, C., Schmid, T., Weber, J., Braun, T.: Opportunistic content-centric data transmission during short network contacts. In: IEEE WCNC, Istanbul, Turkey (April 2014)Google Scholar
  7. 7.
    Gonzalez, M.C., Hidalgo, C.A., Barabasi, L.: Understanding individual human mobility patterns. Nature 453(5), 779–782 (2008)CrossRefGoogle Scholar
  8. 8.
    CCNx (April 2014),
  9. 9.
    Varvello, M., Rimac, I., Lee, U., Greenwald, L., Hilt, V.: On the Design of Content-Centric MANETs. In: 8th WONS, Bardonecchia, Italy, pp. 1–8 (January 2011)Google Scholar
  10. 10.
    Meisel, M., Pappas, V., Zhang, L.: Listen First, Broadcast Later: Topology-Agnostic Forwarding under High Dynamics. In: ACITA, London, UK, pp. 1–8 (September 2010)Google Scholar
  11. 11.
    Hermans, F., Ngai, E., Gunningberg, P.: Global source mobility in the content-centric networking architecture. In: 1st ACM Workshop NOM, Hilton Head Island, South Carolina, USA (June 2012)Google Scholar
  12. 12.
    Ravindran, R., Lo, S., Zhang, X., Wang, G.: Supporting Seamless Mobility in Named Data Networking. In: IEEE FutureNet V (2012)Google Scholar
  13. 13.
    Lee, J., Kim, D.: Proxy-assisted content sharing using content-centric networking (CCN) for resource limited mobile consumer devices. IEEE Consumer Electrics Journal (2011)Google Scholar
  14. 14.
    Tyson, G., Bigham, J., Bodanese, E.: Towards an Information-Centric Delay-Tolerant Network. In: 2nd IEEE NOMEN (2013)Google Scholar
  15. 15.
    Scott, K., Burleigh, S.: Bundle Protocol Specification (November 2007),
  16. 16.
    Su, J., et al.: Haggle: Seamless networking for mobile applications. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 391–408. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Pitkänen, M., Karkkainen, T., Ott, J., Conti, M., Passarella, A., Giordano, S., Puccinelli, D., Legendre, F., Trifunovic, S., Hummel, K., May, M., Hegde, N., Spyropoulos, T.: SCAMPI: Service platform for soCial Aware Mobile and Pervasive computIng. In: Mobile Cloud Computing (MCC), Helsinki, Finland (August 2012)Google Scholar
  18. 18.
    Braun, T., Hilt, V., Hofmann, M., Rimac, I., Steiner, M., Varvello, M.: Service-Centric Networking. In: Fourth International Workshop on the Network of the Future, FutureNet IV (2011)Google Scholar
  19. 19.
  20. 20.
    Jacobson, V., Braynard, R.L., Diebert, T., Mahadevan, P., Mosko, M., Briggs, N., Barber, S., Plass, M., Solis, I., Uzun, E., Lee, B., Jang, M.W., Byun, D., Smetters, D.K., Thornton, J.D.: Custodian-based information sharing. IEEE Communications Magazine 50(7), 38–43 (2012)CrossRefGoogle Scholar
  21. 21.
    Zhao, W., Chen, Y., Ammar, M., Corner, M., Levine, B., Zegura, E.: Capacity Enhancement using Throwboxes in DTNs. In: IEEE International Conference on Mobile Ad hoc and Sensor Networks (MASS) (October 2006)Google Scholar
  22. 22.
    Hofmann, P., An, C., Loyola, L., Aad, I.: Analysis of UDP, TCP and Voice Performance in IEEE 802.11b Multihop Networks. In: 13th European Wireless Conference (2007)Google Scholar
  23. 23.
    Gupta, P., Gray, R., Kumar, R.: An experimental scaling law for ad hoc networks. Technical report. University of Illinois (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carlos Anastasiades
    • 1
  • Wafaa El Maudni El Alami
    • 1
  • Torsten Braun
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations