Optimal Cost-Sharing in Weighted Congestion Games

  • Vasilis Gkatzelis
  • Konstantinos Kollias
  • Tim Roughgarden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8877)


We identify how to share costs locally in weighted congestion games with polynomial cost functions in order to minimize the worst-case price of anarchy (PoA). First, we prove that among all cost-sharing methods that guarantee the existence of pure Nash equilibria, the Shapley value minimizes the worst-case PoA. Second, if the guaranteed existence condition is dropped, then the proportional cost-sharing method minimizes the worst-case PoA over all cost-sharing methods. As a byproduct of our results, we obtain the first PoA analysis of the simple marginal contribution cost-sharing rule, and prove that marginal cost taxes are ineffective for improving equilibria in (atomic) congestion games.


cost-sharing selfish routing congestion games 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abed, F., Huang, C.-C.: Preemptive coordination mechanisms for unrelated machines. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 12–23. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. SIAM J. Comput. 40(5), 1211–1233 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM Journal on Computing 38(4), 1602–1623 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Awerbuch, B., Azar, Y., Epstein, L.: The price of routing unsplittable flow. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 57–66 (2005)Google Scholar
  5. 5.
    Azar, Y., Jain, K., Mirrokni, V.: (almost) optimal coordination mechanisms for unrelated machine scheduling. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pp. 323–332. Society for Industrial and Applied Mathematics, Philadelphia (2008)Google Scholar
  6. 6.
    Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: Price of anarchy, universal worst-case examples, and tightness. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 17–28. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bhawalkar, K., Roughgarden, T.: Simultaneous single-item auctions. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 337–349. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Caragiannis, I.: Efficient coordination mechanisms for unrelated machine scheduling. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 815–824. Society for Industrial and Applied Mathematics, Philadelphia (2009)CrossRefGoogle Scholar
  9. 9.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Improving the efficiency of load balancing games through taxes. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 374–385. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Taxes for linear atomic congestion games. ACM Transactions on Algorithms 7(1), 13 (2010)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chen, H., Roughgarden, T., Valiant, G.: Designing network protocols for good equilibria. SIAM Journal on Computing 39(5), 1799–1832 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410(36), 3327–3336 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Christodoulou, G., Mehlhorn, K., Pyrga, E.: Improving the price of anarchy for selfish routing via coordination mechanisms. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 119–130. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Decentralized utilitarian mechanisms for scheduling games. Games and Economic Behavior (2013)Google Scholar
  15. 15.
    von Falkenhausen, P., Harks, T.: Optimal cost sharing for resource selection games. Math. Oper. Res. 38(1), 184–208 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Fotakis, D., Karakostas, G., Kolliopoulos, S.G.: On the existence of optimal taxes for network congestion games with heterogeneous users. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 162–173. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Fotakis, D., Spirakis, P.G.: Cost-balancing tolls for atomic network congestion games. Internet Mathematics 5(4), 343–363 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gairing, M., Schoppmann, F.: Total latency in singleton congestion games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 381–387. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Gopalakrishnan, R., Marden, J.R., Wierman, A.: Potential games are necessary to ensure pure nash equilibria in cost sharing games. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, EC 2013, pp. 563–564. ACM, New York (2013)CrossRefGoogle Scholar
  20. 20.
    Harks, T., Klimm, M.: On the existence of pure Nash equilibria in weighted congestion games. Mathematics of Operations Research 37(3), 419–436 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Harks, T., Klimm, M., Möhring, R.H.: Characterizing the existence of potential functions in weighted congestion games. Theory of Computing Systems 49(1), 46–70 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Harks, T., Miller, K.: The worst-case efficiency of cost sharing methods in resource allocation games. Operations Research 59(6), 1491–1503 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Immorlica, N., Li, L.E., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for selfish scheduling. Theor. Comput. Sci. 410(17), 1589–1598 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kollias, K.: Nonpreemptive coordination mechanisms for identical machines. Theory of Computing Systems 53(3), 424–440 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Kollias, K., Roughgarden, T.: Restoring pure equilibria to weighted congestion games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 539–551. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Computer Science Review 3(2), 65–69 (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Lucier, B., Borodin, A.: Price of anarchy for greedy auctions. In: SODA, pp. 537–553 (2010)Google Scholar
  28. 28.
    Marden, J.R., Wierman, A.: Distributed welfare games. Operations Research 61(1), 155–168 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1), 111–124 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14(1), 124–143 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Mosk-Aoyama, D., Roughgarden, T.: Worst-case efficiency analysis of queueing disciplines. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 546–557. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Moulin, H.: The price of anarchy of serial, average and incremental cost sharing. Economic Theory 36(3), 379–405 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Moulin, H., Shenker, S.: Strategyproof sharing of submodular costs: Budget balance versus efficiency. Economic Theory 18(3), 511–533 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Redei, L.: Ein kombinatorischer satz. Acta Litteraria Szeged 7, 39–43 (1934)Google Scholar
  35. 35.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2(1), 65–67 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Rosenthal, R.W.: The network equilibrium problem in integers. Networks 3(1), 53–59 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Roughgarden, T.: Intrinsic robustness of the price of anarchy. In: 41st ACM Symposium on Theory of Computing (STOC), pp. 513–522 (2009)Google Scholar
  38. 38.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Shapley, L.S.: Additive and Non-Additive Set Functions. Ph.D. thesis, Department of Mathematics, Princeton University (1953)Google Scholar
  40. 40.
    Shenker, S.J.: Making greed work in networks: A game-theoretic analysis of switch service disciplines. IEEE/ACM Transactions on Networking 3(6), 819–831 (1995)CrossRefMathSciNetGoogle Scholar
  41. 41.
    Syrgkanis, V., Tardos, É.: Composable and efficient mechanisms. In: STOC, pp. 211–220 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vasilis Gkatzelis
    • 1
  • Konstantinos Kollias
    • 1
  • Tim Roughgarden
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations