Advertisement

Congestion Games with Higher Demand Dimensions

  • Max Klimm
  • Andreas Schütz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8877)

Abstract

We introduce a generalization of weighted congestion games in which players are associated with k-dimensional demand vectors and resource costs are k-dimensional functions \(\smash{c : \mathbb{R}_{\geq 0}^k \to \mathbb{R}}\) of the aggregated demand vector of the players using the resource. Such a cost structure is natural when the cost of a resource depends on different properties of the players’ demands, e.g., total weight, total volume, and total number of items. A complete characterization of the existence of pure Nash equilibria in terms of the resource cost functions for all k ∈ ℕ is given.

Keywords

Cost Function Nash Equilibrium Complete Characterization Strategy Space Congestion Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theoret. Comput. Sci. 410(17), 1552–1563 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games Econom. Behav. 65(2), 289–317 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Aumann, R.: Acceptable points in general cooperative n-person games. In: Luce, R., Tucker, A. (eds.) Contributions to the Theory of Games IV, pp. 287–324. Princeton University Press, Princeton (1959)Google Scholar
  5. 5.
    Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proc. 36th Annual ACM Sympos. Theory Comput., pp. 604–612 (2004)Google Scholar
  6. 6.
    Fotakis, D., Kontogiannis, S., Spirakis, P.G.: Selfish unsplittable flows. Theoret. Comput. Sci. 348(2-3), 226–239 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Goemans, M.X., Mirrokni, V.S., Vetta, A.: Sink equilibria and convergence. In: Proc. 46th Annual IEEE Sympos. Foundations Comput. Sci., pp. 142–154 (2005)Google Scholar
  8. 8.
    Harks, T., Klimm, M.: On the existence of pure Nash equilibria in weighted congestion games. Math. Oper. Res. 37(3), 419–436 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Harks, T., Klimm, M., Möhring, R.H.: Characterizing the existence of potential functions in weighted congestion games. Theory Comput. Syst. 49(1), 46–70 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Harks, T., Klimm, M., Möhring, R.H.: Strong equilibria in games with the lexicographical improvement property. Internat. J. Game Theory 42(2), 461–482 (2012)CrossRefGoogle Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Kukushkin, N.S.: Acyclicity in games with common intermediate objectives, Russian Academy of Sciences, Dorodnicyn Computing Center, Moscow (2004)Google Scholar
  13. 13.
    Libman, L., Orda, A.: Atomic resource sharing in noncooperative networks. Telecommun. Syst. 17(4), 385–409 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Panagopoulou, P.N., Spirakis, P.G.: Algorithms for pure Nash equilibria in weighted congestion games. ACM J. Exp. Algorithmics 11, 1–19 (2006)MathSciNetGoogle Scholar
  15. 15.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theory 2(1), 65–67 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Rozenfeld, O., Tennenholtz, M.: Strong and correlated strong equilibria in monotone congestion games. In: Spirakis, P., Mavronicolas, M., Kontogiannis, S. (eds.) WINE 2006. LNCS, vol. 4286, pp. 74–86. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Max Klimm
    • 1
  • Andreas Schütz
    • 1
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations