General Truthfulness Characterizations via Convex Analysis

  • Rafael Frongillo
  • Ian Kash
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8877)


We present a model of truthful elicitation which generalizes and extends mechanisms, scoring rules, and a number of related settings that do not quite qualify as one or the other. Our main result is a characterization theorem, yielding characterizations for all of these settings, including a new characterization of scoring rules for non-convex sets of distributions. We generalize this model to eliciting some property of the agent’s private information, and provide the first general characterization for this setting. We also show how this yields a new proof of a result in mechanism design due to Saks and Yu.


Convex Function Mechanism Design Convex Analysis Allocation Rule Full Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abernethy, J., Frongillo, R.: A characterization of scoring rules for linear properties. In: Proceedings of the 25th Conference on Learning Theory (2012)Google Scholar
  2. 2.
    Abernethy, J., Chen, Y., Vaughan, J.W.: Efficient market making via convex optimization, and a connection to online learning. ACM Transactions on Economics and Computation 1(2), 12 (2013)CrossRefGoogle Scholar
  3. 3.
    Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer (2007)Google Scholar
  4. 4.
    Archer, A., Kleinberg, R.: Truthful germs are contagious: a local to global characterization of truthfulness. In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 21–30 (2008)Google Scholar
  5. 5.
    Ashlagi, I., Braverman, M., Hassidim, A., Monderer, D.: Monotonicity and implementability. Econometrica 78(5), 1749–1772 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM Journal on Computing 16(1), 78–96 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Aurenhammer, F.: Recognising polytopical cell complexes and constructing projection polyhedra. Journal of Symbolic Computation 3(3), 249–255 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Aurenhammer, F.: A criterion for the affine equivalence of cell complexes in r d and convex polyhedra in r d+1. Discrete & Computational Geometry 2(1), 49–64 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Babaioff, M., Blumrosen, L., Lambert, N.S., Reingold, O.: Only valuable experts can be valued. In: Proceedings of the 12th ACM Conference on Electronic Commerce, pp. 221–222 (2011)Google Scholar
  10. 10.
    Babaioff, M., Sharma, Y., Slivkins, A.: Characterizing truthful multi-armed bandit mechanisms. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 79–88 (2009)Google Scholar
  11. 11.
    Baldwin, E., Klemperer, P.: Tropical geometry to analyse demand. Tech. rep., Working paper, Oxford University (2012)Google Scholar
  12. 12.
    Berger, A., Müller, R., Naeemi, S.H.: Characterizing incentive compatibility for convex valuations. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 24–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Berger, A., Müller, R., Hossein, N.S.: Path-monotonicity and incentive compatibility. Tech. rep., Maastricht: METEOR, Maastricht Research School of Economics of Technology and Organization (2010)Google Scholar
  14. 14.
    Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., Sen, A.: Weak monotonicity characterizes deterministic dominant-strategy implementation. Econometrica 74(4), 1109–1132 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Boissonnat, J.D., Nielsen, F., Nock, R.: Bregman voronoi diagrams: Properties, algorithms and applications. CoRR abs/0709.2196 (2007)Google Scholar
  16. 16.
    Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press (January 2010)Google Scholar
  17. 17.
    Cai, Y., Mahdian, M., Mehta, A., Waggoner, B.: Designing markets for daily deals. Preprint (2013)Google Scholar
  18. 18.
    Carbajal, J.C., Ely, J.C.: Mechanism design without revenue equivalence. Journal of Economic Theory (2012)Google Scholar
  19. 19.
    Carroll, G.: When are local incentive constraints sufficient? Econometrica 80(2), 661–686 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Chen, Y., Kash, I., Ruberry, M., Shnayder, V.: Decision markets with good incentives. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 72–83. Springer, Heidelberg (2011)Google Scholar
  21. 21.
    Chen, Y., Kash, I.A.: Information elicitation for decision making. In: AAMAS (2011)Google Scholar
  22. 22.
    Chen, Y., Ruberry, M., Wortman Vaughan, J.: Cost function market makers for measurable spaces. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pp. 785–802 (2013)Google Scholar
  23. 23.
    Chung, K.S., Ely, J.C.: Ex-post incentive compatible mechanism design. Working Paper (2002),
  24. 24.
    Cid-Sueiro, J.: Proper losses for learning from partial labels. In: Advances in Neural Information Processing Systems 25, pp. 1574–1582 (2012)Google Scholar
  25. 25.
    Diakonikolas, I., Papadimitriou, C., Pierrakos, G., Singer, Y.: Efficiency-revenue trade-offs in auctions. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 488–499. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  26. 26.
    Fang, F., Stinchcombe, M.B., Whinston, A.B.: Proper scoring rules with arbitrary value functions. Journal of Mathematical Economics 46(6), 1200–1210 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Feige, U., Tennenholtz, M.: Responsive lotteries. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.) SAGT 2010. LNCS, vol. 6386, pp. 150–161. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Feldman, J., Muthukrishnan, S.: Algorithmic methods for sponsored search advertising. In: Liu, Z., Xia, C.H. (eds.) Performance Modeling and Engineering, pp. 91–122. Springer US (January 2008)Google Scholar
  29. 29.
    Fiat, A., Karlin, A., Koutsoupias, E., Vidali, A.: Approaching utopia: strong truthfulness and externality-resistant mechanisms. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, pp. 221–230 (2013)Google Scholar
  30. 30.
    Frongillo, R.M., Kash, I.A.: Vector-valued property elicitation. Preprint (2014)Google Scholar
  31. 31.
    Frongillo, R.M., Kash, I.A.: General truthfulness characterizations via convex analysis. arXiv:1211.3043 [cs] (November 2012)Google Scholar
  32. 32.
    Gneiting, T.: Making and evaluating point forecasts. Journal of the American Statistical Association 106(494), 746–762 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Gneiting, T., Raftery, A.: Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association 102(477), 359–378 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Gneiting, T., Katzfuss, M.: Probabilistic forecasting. Annual Review of Statistics and Its Application 1, 125–151 (2014)CrossRefGoogle Scholar
  35. 35.
    Grant, K., Gneiting, T.: Consistent scoring functions for quantiles. In: From Probability to Statistics and Back: High-Dimensional Models and Processes – A Festschrift in Honor of Jon A. Wellner, pp. 163–173. Institute of Mathematical Statistics (2013)Google Scholar
  36. 36.
    Halpern, J.: Reasoning about uncertainty. MIT Press (2003)Google Scholar
  37. 37.
    Heydenreich, B., Müller, R., Uetz, M., Vohra, R.V.: Characterization of revenue equivalence. Econometrica 77(1), 307–316 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Ioffe, A.D., Tikhomirov, V.M.: Theory of extremal problems. North-Holland Pub. Co.; sole distributors for the U.S.A. and Canada, Elsevier, North-Holland, Amsterdam, New York (1979)Google Scholar
  39. 39.
    Iyer, R., Bilmes, J.: The lovász-bregman divergence and connections to rank aggregation, clustering, and web ranking: Extended version. In: Uncertainity in Artificial Intelligence (2013)Google Scholar
  40. 40.
    Jehiel, P., Moldovanu, B.: Efficient design with interdependent valuations. Econometrica 69(5), 1237–1259 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  41. 41.
    Jehiel, P., Moldovanu, B., Stacchetti, E.: How (not) to sell nuclear weapons. The American Economic Review 86(4), 814–829 (1996)Google Scholar
  42. 42.
    Jehiel, P., Moldovanu, B., Stacchetti, E.: Multidimensional mechanism design for auctions with externalities. Journal of Economic Theory 85(2), 258–293 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Kos, N., Messner, M.: Extremal incentive compatible transfers. Journal of Economic Theory (2012)Google Scholar
  44. 44.
    Krishna, V., Maenner, E.: Convex potentials with an application to mechanism design. Econometrica 69(4), 1113–1119 (2001)CrossRefGoogle Scholar
  45. 45.
    Lai, H.C., Lin, L.J.: The fenchel-moreau theorem for set functions. Proceedings of the American Mathematical Society, 85–90 (1988)Google Scholar
  46. 46.
    Lambert, N.: Elicitation and evaluation of statistical forecasts. Preprint (2011)Google Scholar
  47. 47.
    Lambert, N., Pennock, D., Shoham, Y.: Eliciting properties of probability distributions. In: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 129–138 (2008)Google Scholar
  48. 48.
    Lambert, N., Shoham, Y.: Eliciting truthful answers to multiple-choice questions. In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 109–118 (2009)Google Scholar
  49. 49.
    McAfee, R., McMillan, J.: Multidimensional incentive compatibility and mechanism design. Journal of Economic Theory 46(2), 335–354 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Myerson, R.B.: Optimal auction design. Mathematics of Operations Research, 58–73 (1981)Google Scholar
  51. 51.
    Müller, R., Perea, A., Wolf, S.: Weak monotonicity and bayes-nash incentive compatibility. Games and Economic Behavior 61(2), 344–358 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Negahban, S.N., Ravikumar, P., Wainwright, M.J., Yu, B.: A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. arXiv preprint arXiv:1010.2731 (2010)Google Scholar
  53. 53.
    Ok, E.A.: Real analysis with economic applications, vol. 10. Princeton University Press (2007)Google Scholar
  54. 54.
    Osband, K., Reichelstein, S.: Information-eliciting compensation schemes. Journal of Public Economics 27(1), 107–115 (1985)CrossRefGoogle Scholar
  55. 55.
    Osband, K.H.: Providing Incentives for Better Cost Forecasting. University of California, Berkeley (1985)Google Scholar
  56. 56.
    Othman, A., Sandholm, T.: Decision rules and decision markets. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 625–632 (2010)Google Scholar
  57. 57.
    Peters, H.J.M., Wakker, P.P.: Convex functions on non-convex domains. Economics Letters 22(2-3), 251–255 (1987)CrossRefMathSciNetGoogle Scholar
  58. 58.
    Rochet, J.C.: A necessary and sufficient condition for rationalizability in a quasi-linear context. Journal of Mathematical Economics 16(2), 191–200 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Rockafellar, R.: Convex analysis, Princeton Mathematics Series, vol. 28. Princeton University Press (1997)Google Scholar
  60. 60.
    Saks, M., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains. In: Proceedings of the 6th ACM Conference on Electronic Commerce, pp. 286–293 (2005)Google Scholar
  61. 61.
    Savage, L.: Elicitation of personal probabilities and expectations. Journal of the American Statistical Association, 783–801 (1971)Google Scholar
  62. 62.
    Steinwart, I., Pasin, C., Williamson, R., Zhang, S.: Elicitation and identification of properties. Technical Report Stuttgart University (2014)Google Scholar
  63. 63.
    Urruty, J.B.H., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer (2001)Google Scholar
  64. 64.
    Van Manen, M., Siersma, D.: Power diagrams and their applications. arXiv preprint math/0508037 (2005)Google Scholar
  65. 65.
    Vohra, R.V.: Mechanism design: a linear programming approach. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  66. 66.
    Yan, M.: Extension of convex functions. arXiv preprint arXiv:1207.0944 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rafael Frongillo
    • 1
  • Ian Kash
    • 1
  1. 1.Microsoft ResearchUSA

Personalised recommendations