Advertisement

Resource Competition on Integral Polymatroids

  • Tobias Harks
  • Max Klimm
  • Britta Peis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8877)

Abstract

We study competitive resource allocation problems in which players distribute their demands integrally over a set of resources subject to player-specific submodular capacity constraints. Each player has to pay for each unit of demand a cost that is a non-decreasing and convex function of the total allocation of that resource. This general model of resource allocation generalizes both singleton congestion games with integer-splittable demands and matroid congestion games with player-specific costs. As our main result, we show that in such general resource allocation problems a pure Nash equilibrium is guaranteed to exist by giving a pseudo-polynomial algorithm computing a pure Nash equilibrium.

Keywords

Rank Function Resource Competition Strategy Space Congestion Game Pure Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theoret. Comput. Sci. 410(17), 1552–1563 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Antonakopoulos, S., Chekuri, C., Shepherd, F.B., Zhang, L.: Buy-at-bulk network design with protection. Math. Oper. Res. 36(1), 71–87 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Beckmann, M., McGuire, C., Winsten, C.: Studies in the Economics and Transportation. Yale University Press, New Haven (1956)Google Scholar
  5. 5.
    Chen, H., Roughgarden, T.: Network design with weighted players. Theory Comput. Syst. 45(2), 302–324 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, H.L., Roughgarden, T., Valiant, G.: Designing network protocols for good equilibria. SIAM J. Comput. 39(5), 1799–1832 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dunkel, J., Schulz, A.: On the complexity of pure-strategy Nash equilibria in congestion and local-effect games. Math. Oper. Res. 33(4), 851–868 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Faigle, U.: The greedy algorithm for partially ordered sets. Discrete Math. 28(2), 153–159 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    von Falkenhausen, P., Harks, T.: Optimal cost sharing for resource selection games. Math. Oper. Res. 38(1), 184–208 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. Theoret. Comput. Sci. 348(2-3), 226–239 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gairing, M., Monien, B., Tiemann, K.: Routing (un-)splittable flow in games with player-specific linear latency functions. ACM Trans. Algorithms 7(3), 1–31 (2011)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Harks, T., Klimm, M.: Congestion games with variable demands. In: Apt, K. (ed.) Proc. 13th Conf. Theoret. Aspects of Rationality and Knowledge, pp. 111–120 (2011)Google Scholar
  13. 13.
    Harks, T., Klimm, M.: On the existence of pure Nash equilibria in weighted congestion games. Math. Oper. Res. 37(3), 419–436 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Haurie, A., Marcotte, P.: On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15, 295–308 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Helgason, T.: Aspects of the theory of hypermatroids. In: Hypergraph Seminar, pp. 191–213. Springer (1974)Google Scholar
  16. 16.
    Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: A simple class of congestion games. In: Proc. 20th Natl. Conf. Artificial Intelligence and the 17th Innovative Appl. Artificial Intelligence Conf., pp. 489–494 (2005)Google Scholar
  17. 17.
    Johari, R., Tsitsiklis, J.N.: A scalable network resource allocation mechanism with bounded efficiency loss. IEEE J. Sel. Area Commun. 24(5), 992–999 (2006)CrossRefGoogle Scholar
  18. 18.
    Kelly, F., Maulloo, A., Tan, D.: Rate control in communication networks: Shadow prices, proportional fairness, and stability. J. Oper. Res. Soc. 49, 237–252 (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Krysta, P., Sanders, P., Vöcking, B.: Scheduling and traffic allocation for tasks with bounded splittability. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 500–510. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Meyers, C.: Network Flow Problems and Congestion Games: Complexity and Approximation Results. Ph.D. thesis, MIT, Operations Research Center (2006)Google Scholar
  21. 21.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econom. Behav. 13(1), 111–124 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Milchtaich, I.: The equilibrium existence problem in finite network congestion games. In: Spirakis, P., Mavronicolas, M., Kontogiannis, S. (eds.) WINE 2006. LNCS, vol. 4286, pp. 87–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theory 2(1), 65–67 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Rosenthal, R.: The network equilibrium problem in integers. Networks 3, 53–59 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)Google Scholar
  26. 26.
    Schrijver, A.: Combinatorial optimization: Polyhedra and efficiency, vol. 24. Springer (2003)Google Scholar
  27. 27.
    Srikant, R.: The Mathematics of Internet Congestion Control. Birkhäuser, Basel (2003)Google Scholar
  28. 28.
    Tran-Thanh, L., Polukarov, M., Chapman, A., Rogers, A., Jennings, N.R.: On the existence of pure strategy Nash equilibria in integer–splittable weighted congestion games. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 236–253. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Wardrop, J.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Engineers 1(Part II), 325–378 (1952)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tobias Harks
    • 1
  • Max Klimm
    • 2
  • Britta Peis
    • 3
  1. 1.Department of Quantitative EconomicsMaastricht UniversityThe Netherlands
  2. 2.Department of MathematicsTechnische Universität BerlinGermany
  3. 3.School of Business and EconomicsRWTH Aachen UniversityGermany

Personalised recommendations