Facility Location Under Uncertainty



In this chapter, we cover some essential knowledge on facility location under uncertainty. We put a major emphasis on modeling aspects related with discrete facility location problems. Different modeling frameworks are discussed. In particular, we distinguish between robust optimization, stochastic programming and chance-constrained models. We also discuss relevant aspects such as solution techniques, multi-stage stochastic programming models, scenario generation, and extensions of basic problems.


Chance constraints Robust optimization Stochastic programming 


  1. Aghezzaf E (2005) Capacity planning and warehouse location in supply chains with uncertain demands. J Oper Res Soc 56:453–462CrossRefGoogle Scholar
  2. Ahmed S, Garcia R (2004) Dynamic capacity acquisition and assignment under uncertainty. Ann Oper Res 124:267–283CrossRefGoogle Scholar
  3. Albareda-Sambola M, Fernández E, Laporte G (2007) Heuristic and lower bound for a stochastic location-routing problem. Eur J Oper Res 179:940–955CrossRefGoogle Scholar
  4. Albareda-Sambola M, Fernández E, Saldanha da Gama F (2011) The facility location problem with Bernoulli demands. Omega 39:335–345CrossRefGoogle Scholar
  5. Albareda-Sambola M, Alonso-Ayuso A, Escudero LF, Fernández E, Pizarro C (2013) Fix-and-relax coordination for a multi-period location-allocation problem under uncertainty. Comput Oper Res 40:2878–2892CrossRefGoogle Scholar
  6. Alonso-Ayuso A, Escudero LF, Garín A, Ortuño MT, Pérez G (2003) An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming. J Global Optim 26:97–124Google Scholar
  7. Alumur SA, Nickel S, Saldanha da Gama F (2012) Hub location under uncertainty. Transp Res B Methodol 46:529–543CrossRefGoogle Scholar
  8. Baron O, Milner J, Naseraldin H (2011) Facility location: a robust optimization approach. Prod Oper Manag 20:772–785CrossRefGoogle Scholar
  9. Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton/OxfordCrossRefGoogle Scholar
  10. Berman O, Drezner Z (2008) The p-median problem under uncertainty. Eur J Oper Res 189:19–30CrossRefGoogle Scholar
  11. Berman O, Wang J (2010) The network p-median problem with discrete probabilistic demand weights. Comput Oper Res 37:1455–1463CrossRefGoogle Scholar
  12. Birge JR, Louveaux F (2011) Introduction to stochastic programming, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  13. Blanquero R, Carrizosa E, Hendrix EMT (2011) Locating a competitive facility in the plane with a robustness criterion. Eur J Oper Res 215:21–24CrossRefGoogle Scholar
  14. Carrizosa E, Nickel S (2003) Robust facility location. Math Method Oper Res 58:331–349CrossRefGoogle Scholar
  15. Carrøe CC, Schultz R (1999) Dual decomposition in stochastic integer programming. Oper Res Lett 24:37–45CrossRefGoogle Scholar
  16. Chen G, Daskin MS, Shen Z-JM, Uryasev S (2006) The α-reliable mean-excess regret model for stochastic facility location modeling. Nav Res Log 53:617–626CrossRefGoogle Scholar
  17. Conde E (2007) Minmax regret location-allocation problem on a network under uncertainty. Eur J Oper Res 179:1025–1039CrossRefGoogle Scholar
  18. Current J, Ratick S, ReVelle CS (1997) Dynamic facility location when the total number of facilities is uncertain: a decision analysis approach. Eur J Oper Res 110:597–609CrossRefGoogle Scholar
  19. Daskin MS, Hesse SM, ReVelle CS (1997) α-Reliable p-minimax regret: a new model for strategic facility location modeling. Locat Sci 5:227–246CrossRefGoogle Scholar
  20. Daskin MS, Coullard CR, Shen Z-JM (2002) An inventory-location model: formulation, solution algorithm and computational results. Ann Oper Res 110:83–106CrossRefGoogle Scholar
  21. Di Domenica N, Mitra G, Valente P, Birbilis G (2007) Stochastic programming and scenario generation within a simulation framework: an information systems perspective. Decis Support Syst 42:2197–2218CrossRefGoogle Scholar
  22. Drezner Z, Nickel S, Ziegler H-P (2012) Stochastic analysis of ordered median problems. J Oper Res Soc 63:1578–1588CrossRefGoogle Scholar
  23. Dupačová J, Gröwe-Kuska N, Römisch W (2003) Scenario reduction in stochastic programming. Math Program A 95:493–511CrossRefGoogle Scholar
  24. Escudero LF, Garín MA, Merino M, Pérez G (2009) BFC-MSMIP: an exact branch-and-fix coordination approach for solving multistage stochastic mixed 0-1 problems. TOP 17:96–122Google Scholar
  25. Escudero LF, Garín MA, Merino M, Pérez G (2010) On BFC-MSMIP strategies for scenario cluster partitioning, and twin node family branching selection and bounding for multistage stochastic mixed integer programming. Comput Oper Res 37:738–753CrossRefGoogle Scholar
  26. Escudero LF, Garín MA, Pérez G, Unzueta A (2012) Lagrangian decomposition for large-scale two-stage stochastic mixed 0-1 problems. TOP 20:347–374Google Scholar
  27. Fonseca MC, García-Sánchez A, Ortega-Mier M, Saldanha da Gama F (2010) A stochastic bi-objective location model for strategic reverse logistics. TOP 18:158–184CrossRefGoogle Scholar
  28. França PM, Luna HPL (1982) Solving stochastic transportation-location problems by generalized Benders decomposition. Transp Sci 16:113–126CrossRefGoogle Scholar
  29. Guan Y, Ahmed S, Nemhauser GL (2009) Cutting planes for multistage stochastic integer programs. Oper Res 57:287–298CrossRefGoogle Scholar
  30. Hernández P, Alonso-Ayuso A, Bravo F, Escudero LF, Guignard M, Marianov V, Weintraub A (2012) A branch-and-cluster coordination scheme for selecting prison facility sites under uncertainty. Comput Oper Res 39:2232–2241CrossRefGoogle Scholar
  31. Hinojosa Y, Puerto J, Saldanha da Gama F (2014) A two-stage stochastic transportation problem with fixed handling costs and a priori selection of the distribution channels. TOP. doi:10.1007/s11750-014-0321-4Google Scholar
  32. Holmberg K, Tuy H (1999) A production-transportation problem with stochastic demand and concave production costs. Math Program 85:157–179CrossRefGoogle Scholar
  33. Høyland K, Wallace SW (2001) Generating scenario trees for multistage decision problems. Manag Sci 47:295–307CrossRefGoogle Scholar
  34. Jucker JV, Carlson C (1976) The simple plant-location problem under uncertainty. Oper Res 24:1045–1055CrossRefGoogle Scholar
  35. Kiya F, Davoudpour H (2012) Stochastic programming approach to re-designing a warehouse network under uncertainty. Transp Res E-LOG 48:919–936CrossRefGoogle Scholar
  36. Kleywegt A, Shapiro A, Homem-de-Mello T (2001) The sample average approximation method for stochastic discrete optimization. SIAM J Optim 12:479–502CrossRefGoogle Scholar
  37. Kouvelis P, Yu G (1997) Robust discrete optimization. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  38. Laporte G, Louveaux FV (1993) The integer L-shaped method for stochastic integer programs with complete recourse. Oper Res Lett 13:133–142CrossRefGoogle Scholar
  39. Laporte G, Louveaux FV, Van hamme L (1994) Exact solution to a location problem with stochastic demands. Transp Sci 28:95–103Google Scholar
  40. Lim GJ, Sonmez AD (2013) γ-Robust facility relocation problem. Eur J Oper Res 229:67–74CrossRefGoogle Scholar
  41. Lin CKY (2009) Stochastic single-source capacitated facility location model with service level requirements. Int J Prod Econ 117:439–451CrossRefGoogle Scholar
  42. Listeş O, Dekker R (2005) A stochastic approach to a case study for product recovery network design. Eur J Oper Res 160:268–287CrossRefGoogle Scholar
  43. López-de-los-Mozos MC, Puerto J, Rodríguez-Chía AM (2013) Robust mean absolute deviation problems on networks with linear vertex weights. Networks 61:76–85CrossRefGoogle Scholar
  44. Louveaux FV (1986) Discrete stochastic location models. Ann Oper Res 6:23–34CrossRefGoogle Scholar
  45. Louveaux FV (1993) Stochastic location analysis. Locat Sci 1:127–154Google Scholar
  46. Louveaux FV, Peeters D (1992) A dual-based procedure for stochastic facility location. Oper Res 40:564–573CrossRefGoogle Scholar
  47. Lu C-C (2013) Robust weighted vertex p-center model considering uncertain data: an application to emergency management. Eur J Oper Res 230:113–121CrossRefGoogle Scholar
  48. Lu C-C, Sheu J-B (2013) Robust vertex p-center model for locating urgent relief distribution centers. Comput Oper Res 40:2128–2137CrossRefGoogle Scholar
  49. Luedtke J, Ahmed S (2008) A sample approximation approach for optimization with probabilistic constraints. SIAM J Optim 19:674–699CrossRefGoogle Scholar
  50. Mausser HE, Laguna M (1998) A new mixed integer formulation for the maximum regret problem. Int Trans Oper Res 5:389–403CrossRefGoogle Scholar
  51. Mirchandani PB, Oudjit A, Wong RT (1985) ‘Multidimensional’ extensions and a nested dual approach for the m-median problem. Eur J Oper Res 21:121–137CrossRefGoogle Scholar
  52. Mo Y, Harrison TP (2005) A conceptual framework for robust supply chain design under demand uncertainty. In: Geunes J, Pardalos PM (eds) Supply chain optimization. Springer, New York, pp 243–263CrossRefGoogle Scholar
  53. Nickel S, Saldanha da Gama F, Ziegler H-P (2012) A multi-stage stochastic supply network design problem with financial decisions and risk management. Omega 40:511–524CrossRefGoogle Scholar
  54. Nikoofal ME, Sadjadi SJ (2010) A robust optimization model for p-median problem with uncertain edge lengths. Int J Adv Manuf Technol 50:391–397CrossRefGoogle Scholar
  55. Pagnoncelli BK, Ahmed S, Shapiro A (2009) Sample average approximation method for chance constrained programming: theory and applications. J Optim Theory Appl 142:399–416CrossRefGoogle Scholar
  56. Pan F, Nagi R (2010) Robust supply chain design under uncertain demand in agile manufacturing. Comput Oper Res 37:668–683CrossRefGoogle Scholar
  57. Ravi R, Sinha A (2006) Hedging uncertainty: approximation algorithms for stochastic optimization problems. Math. Program A 108:97–114CrossRefGoogle Scholar
  58. ReVelle CS, Hogan K (1989) The maximum availability location problem. Transp Sci 23:192–200CrossRefGoogle Scholar
  59. Rockafeller R, Wets RJ-B (1991) Scenario and policy aggregation in optimisation under uncertainty. Math Oper Res 16:119–147CrossRefGoogle Scholar
  60. Romauch M, Hartl RF (2005) Dynamic facility location with stochastic demands. In: Lupanov OB, Kasim-Zade OM, Chaskin AV, Steinhöfel K (eds) Stochastic algorithms: foundations and applications. Springer, Berlin Heidelberg, pp 180–189CrossRefGoogle Scholar
  61. Rosenhead J, Elton M, Gupta SK (1972) Robustness and optimality as criteria for strategic decisions. Oper Res Q 23:413–431CrossRefGoogle Scholar
  62. Santoso T, Ahmed S, Goetschalckx M, Shapiro A (2005) A stochastic programming approach for supply chain network design under uncertainty. Eur J Oper Res 167:96–115CrossRefGoogle Scholar
  63. Schütz P, Stougie L, Tomasgard A (2008) Stochastic facility location with general long-run costs and convex short-run costs. Comput Oper Res 35:2988–3000CrossRefGoogle Scholar
  64. Schütz P, Tomasgard A, Ahmed S (2009) Supply chain design under uncertainty using sample average approximation and dual decomposition. Eur J Oper Res 199:409–419CrossRefGoogle Scholar
  65. Serra D, Marianov V (1998) The p-median problem in a changing network: the case of Barcelona. Locat Sci 6:383–394CrossRefGoogle Scholar
  66. Serra D, Ratick S, ReVelle CS (1996) The maximum capture problem with uncertainty. Environ Plan 23:49–59CrossRefGoogle Scholar
  67. Shapiro A, Dentcheva D, Ruszczyński A (2009) Lectures on stochastic programming: modeling and theory. MPS-SIAM series on optimization. SIAM-MPS, PhiladelphiaCrossRefGoogle Scholar
  68. Snyder L (2006) Facility location under uncertainty: a review. IIE Trans 38:537–554CrossRefGoogle Scholar
  69. Snyder L, Daskin MS (2006) Stochastic p-robust location problems. IIE Trans 38:971–985CrossRefGoogle Scholar
  70. Snyder L, Daskin MS, Teo C-P (2007) The stochastic location model with risk pooling. Eur J Oper Res 179:1221–1238CrossRefGoogle Scholar
  71. Sonmez AD, Lim GJ (2012) A decomposition approach for facility location and relocation problem with uncertain number of future facilities. Eur J Oper Res 218:327–338CrossRefGoogle Scholar
  72. Wang X, Xu D, Zhao XD (2011) A primal-dual approximation algorithm for stochastic facility location problem with service installation costs. Front Math China 6:957–964CrossRefGoogle Scholar
  73. Weaver JR, Church RL (1983) Computational procedures for location problems on stochastic networks. Transp Sci 17:168–180CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Departamento de Matemática, Centro de Matemática e AplicaçõesUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Departamento de Estatística e Investigação Operacional, Centro de Investigação OperacionalUniversidade de Lisboa Campo GrandeLisboaPortugal

Personalised recommendations