Introduction to Location Science



This chapter introduces modern Location Science. It traces the roots of the area and describes the path leading to the full establishment of this research field. It identifies several disciplines having strong links with Location Science and offers examples of areas in which the knowledge accumulated in the field of location has been applied with great success. It describes the purpose and structure of this volume. Finally, it provides suggestions on how to make use of the contents presented in this book, namely for organizing general or specialized location courses targeting different audiences.


Application areas Foundations Location courses Location science, Related disciplines 


  1. Avella P, Benati S, Cánovas-Martinez L, Dalby K, Di Girolamo D, Dimitrijevic B, Giannikos I, Guttman N, Hultberg TH, Fliege J, Muñoz-Márquez M, Ndiaye MM, Nickel S, Peeters P, Pérez-Brito D, Policastro S, Saldanha da Gama F, Zidda P (1998) Some personal views on the current state and the future of locational analysis. Eur J Oper Res 104:269–287CrossRefGoogle Scholar
  2. Balinski ML (1965) Integer programming: methods, uses, computation. Manag Sci 12:253–313CrossRefGoogle Scholar
  3. Block D, DuPuis EM (2001) Making the country work for the city. Am J Econ Sociol 60:79–98Google Scholar
  4. Brandeau ML, Chiu SS (1989) An overview of representative problems in location research. Manag Sci 35:645–674CrossRefGoogle Scholar
  5. Brimberg J, Drezner Z (2013) A new heuristic for solving the p-median problem in the plane. Comput Oper Res 40:427–437CrossRefGoogle Scholar
  6. Brimberg J, Drezner Z, Mladenović N, Salhi S (2014) A new local search for continuous location problems. Eur J Oper Res 232:256–265CrossRefGoogle Scholar
  7. Chao I-M (2002) A tabu search method for the truck and trailer routing problem. Comput Oper Res 29:33–51CrossRefGoogle Scholar
  8. Cooper L (1963) Location-allocation problems. Oper Res 11:331–343CrossRefGoogle Scholar
  9. Daskin MS (2013) Network and discrete location: models, algorithms and applications, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  10. Drezner Z (ed) (1995) Facility location: a survey of applications and methods. Springer, New YorkGoogle Scholar
  11. Drezner Z, Hamacher H (eds) (2002) Facility location: applications and theory. Springer, Berlin/HeidelbergGoogle Scholar
  12. Drezner Z, Brimberg J, Mladenović N, Salhi S (2014) New heuristic algorithms for solving the planar p-median problem. Comput Oper Res. doi: 10.1016/j.cor.2014.05.010Google Scholar
  13. Eiselt HA, Marianov V (eds) (2011) Foundations of location analysis. Springer, New YorkGoogle Scholar
  14. Fischer K (2011) Central places: the theories of von Thünen, Christaller, and Lösch. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, New York, pp 471–505CrossRefGoogle Scholar
  15. Gollowitzer S, Ljubić I (2011) MIP models for connected facility location: a theoretical and computational study. Comput Oper Res 38:435–449CrossRefGoogle Scholar
  16. Hakimi SL (1964) Optimal location of switching centers and the absolute centers and medians of a graph. Oper Res 12:450–459CrossRefGoogle Scholar
  17. Hakimi SL (1965) Optimal distribution of switching centers in a communication network and some related graph theoretic problems. Oper Res 13:462–475CrossRefGoogle Scholar
  18. Hale TS, Moberg CR (2003) Location science research: a review. Ann Oper Res 123:21–35CrossRefGoogle Scholar
  19. Heinen F (1834) Über Systeme von Kräften, deren Intensitäten sich wie die n. Potenzen der Entfernungen gegebener Punkte von einem Central-Punkte verhalten, in Beziehung auf Punkte, für welche die Summe der n. Entfernungs-Potenzen ein Maximum oder Minimum ist. Bädeker, EssenGoogle Scholar
  20. Launhardt C-F (1900) The principles of location: the theory of the trace. Part I: the commercial trace (trans: Bewley A, 1900). Lawrence Asylum Press, MadrasGoogle Scholar
  21. Lösch A (1944) The economics of location (trans: Woglom WH, 1954). Yale University Press, New HavenGoogle Scholar
  22. Melo MT, Nickel S, Saldanha da Gama F (2006) Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput Oper Res 33:181–208CrossRefGoogle Scholar
  23. Mielhe W (1958) Link-length minimization in networks. Oper Res 6:232–243CrossRefGoogle Scholar
  24. Mirchandani PB, Francis RL (eds) (1990) Discrete location theory. Wiley, New YorkGoogle Scholar
  25. Nam NM (2013) The Fermat-Torricelli problem in the light of convex analysis. ArXiv e-prints. Provided by the SAO/NASA astrophysics data system.
  26. Nickel S, Puerto J (2005) Location theory: a unified approach. Springer, Berlin/HeidelbergGoogle Scholar
  27. Nickel S, Schöbel A, Sonneborn T (2001) Hub location problems in urban traffic networks. In: Niittymaki J, Pursula M (eds) Mathematical methods and optimization in transportation systems. Kluwer Academic Publishers, Dordrecht, pp 1–12Google Scholar
  28. Okabe A, Suzuki A (1997) Locational optimization problems solved through Voronoi diagrams. Eur J Oper Res 98:445–456CrossRefGoogle Scholar
  29. Pinto JV (1977) Launhardt and location theory: rediscovery of a neglected book. J Reg Sci 17:17–29CrossRefGoogle Scholar
  30. Plastria F (2011) The Weiszfeld algorithm: proof, amendments, and extensions. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, New York, pp 357–389CrossRefGoogle Scholar
  31. ReVelle CS, Eiselt HA (2005) Location analysis: a synthesis and survey. Eur J Oper Res 165:1–19CrossRefGoogle Scholar
  32. ReVelle CS, Laporte G (1996) The plant location problem: new models and research prospects. Oper Res 44:864–874CrossRefGoogle Scholar
  33. ReVelle CS, Swain RW (1970) Central facilities location. Geogr Anal 2:30–42CrossRefGoogle Scholar
  34. ReVelle CS, Eiselt HA, Daskin MS (2008) A bibliography for some fundamental problem categories in discrete location science. Eur J Oper Res 184:817–848CrossRefGoogle Scholar
  35. Smith HK, Laporte G, Harper PR (2009) Locational analysis: highlights of growth to maturity. J Oper Res Soc 60:S140–S148CrossRefGoogle Scholar
  36. Toregas C, Swain R, ReVelle CS, Bergman L (1971) The location of emergency service facilities. Oper Res 19:1363–1373CrossRefGoogle Scholar
  37. von Thünen JH (1842) The isolated state (trans: Wartenberg CM, 1966). Pergamon Press, OxfordGoogle Scholar
  38. Weber A (1909) Theory of the location of industries (trans: Friedrich CJ, 1929). University of Chicago Press, ChicagoGoogle Scholar
  39. Weiszfeld EV (1937) Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math J 43:335–386Google Scholar
  40. Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.HEC MontréalMontréalCanada
  2. 2.Institute for Operations ResearchKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.Fraunhofer Institute for Industrial Mathematics (ITWM)KaiserslauternGermany
  4. 4.Centro de Investigação Operacional/Departamento de Estatística e Investigação OperacionalFaculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations