A Multiple Kernel Learning Based Fusion Framework for Real-Time Multi-View Action Recognition

  • Feng Gu
  • Francisco Flórez-Revuelta
  • Dorothy Monekosso
  • Paolo Remagnino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8868)


Due to the increasing demand of multi-camera setup and long-term monitoring in vision applications, real-time multi-view action recognition has gain a great interest in recent years. In this paper, we propose a multiple kernel learning based fusion framework that employs a motion-based person detector for finding regions of interest and local descriptors with bag-of-words quantisation for feature representation. The experimental results on a multi-view action dataset suggest that the proposed framework significantly outperforms simple fusion techniques and state-of-the-art methods.


Action Recognition Camera View Multiple Kernel Multiple Kernel Learning Human Action Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chaaraoui, A.A., Climent-Perez, P., Florez-Revuelta, F.: Silhouette-based human action recognition using sequences of key poses. Pattern Recognition Letters 34, 1799–1807 (2013)CrossRefGoogle Scholar
  2. 2.
    Chaaraoui, A.A., Padilla-Lopez, J.R., Ferrandez-Pastor, F.J., Nieto-Hidalgo, M., Florez-Revuelta, F.: A vision-based system for intelligent monitoring: human behaviour analysis and privacy by context. Sensors 14, 8895–8925 (2014)CrossRefGoogle Scholar
  3. 3.
    Cilla, R., Patricio, M.A., Berlanga, A.: A probabilistic, discriminative and distributed system for the recognition of human actions from multiple views. Neurocomputing 75, 78–87 (2012)CrossRefGoogle Scholar
  4. 4.
    Cilla, R., Patricio, M.A., Berlanga, A., Molina, J.M.: Human action recognition with sparse classification and multiple-view learning. Expert Systems (2013), doi:10.1111/exsy.12040Google Scholar
  5. 5.
    Gonen, M., Alpaydm, E.: Multiple kernel learning algorithms. Journal of Machine Learning Research (JMLR) 12, 2211–2268 (2011)MathSciNetGoogle Scholar
  6. 6.
    Holte, M., Chakraborty, B., Gonzalez, J., Moeslund, T.: A local 3-D motion descriptor for mult-view human action recognition from 4-D spatio-temporal interest points. IEEE Journal of Selected Topics in Signal Processing 6, 553–565 (2012)CrossRefGoogle Scholar
  7. 7.
    Stauffer, C., Grimson, W.: Learning patterns of activity using real time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 22(8), 747–767 (2000)CrossRefGoogle Scholar
  8. 8.
    Varma, M., Babu, B.R.: More generality in efficient multiple kernel learning. In: International Conference on Machine Learning, ICML (2009)Google Scholar
  9. 9.
    Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: International Conference on Computer Vision, ICCV (2009)Google Scholar
  10. 10.
    Wang, H., Schmid, C.: Action recognition with improved trajectories. In: IEEE International Conference on Computer Vision, ICCV (2013)Google Scholar
  11. 11.
    Weinland, D., Özuysal, M., Fua, P.: Making action recognition robust to occlusions and viewpoint changes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 635–648. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding 104(2-3), 249–257 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Feng Gu
    • 1
  • Francisco Flórez-Revuelta
    • 1
  • Dorothy Monekosso
    • 1
  • Paolo Remagnino
    • 1
  1. 1.Digital Imaging Research CentreKingston UniversityLondonUK

Personalised recommendations