A Virtual Coach for Active Ageing Based on Sentient Computing and m-health

  • Zoraida Callejas
  • David Griol
  • Michael F. McTear
  • Ramón López-Cózar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8868)


As life expectancy increases it has become more necessary to find ways to support healthy ageing. A number of active ageing initiatives are being developed nowadays to foster healthy habits in the population. This paper presents our contribution to these initiatives in the form of a conversational agent that acts as a coach for physical activities. The agent can be developed as an Android app running on smartphones and coupled with cheap widely available sport sensors in order to provide meaningful coaching. It can be employed to prepare exercise sessions, provide feedback during the sessions, and to discuss the results after the exercise. It incorporates an affective component that informs dynamic user models to produce adaptive interaction strategies.


Sentient computing m-health wearable technologies active ageing mobile interfaces conversational interfaces multimodal interacion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grönvall, E., Verdezoto, N.: Beyond self-monitoring: Understanding non-functional aspects of home-based healthcare technology. In: UbiComp 2013 - Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing., pp. 587–596 (2013)Google Scholar
  2. 2.
    Hudlicka, E.: Virtual training and coaching of health behavior: Example from mindfulness meditation training. Patient Education and Counseling 92(2), 160–166 (2013)CrossRefGoogle Scholar
  3. 3.
    Poole, E.: HCI and mobile health interventions: How human-computer interaction can contribute to successful mobile health interventions. Translational Behavioral Medicine 3(4), 402–405 (2013)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Pfeifer, L., Bickmore, T.: Designing Embodied Conversational Agents to Conduct Longitudinal Health Interviews. In: Proc. Intelligent Virtual Agents 2010, pp. 4698–4703 (2010)Google Scholar
  5. 5.
    Giorgino, T., Azzini, I., Rognoni, C., Quaglini, S., Stefanelli, M., Gretter, R., Falavigna, D.: Automated spoken dialogue system for hypertensive patient home management. Journal of Medical Informatics 74, 159–167 (2004)CrossRefGoogle Scholar
  6. 6.
    Mooney, K., Beck, S., Dudley, W., Farzanfar, R., Friedman, R.: A computer-based telecommunication system to improve symptom care for women with breast cancer. Annals of Behavioral Medicine Annual Meeting Supplement 27, 152–161 (2004)Google Scholar
  7. 7.
    Allen, J., Ferguson, G., Blaylock, N., Byron, D., Chambers, N., Dzikovska, M., Galescu, L., Swift, M.: Chester: towards a personal medication advisor. Journal of Biomedical Informatics 39(5), 500–513 (2006)CrossRefGoogle Scholar
  8. 8.
    Bickmore, T., Puskar, K., Schlenk, E., Pfeifer, L., Sereika, S.: Maintaining reality: Relational agents for antipsychotic medication adherence. Interacting with Computers 22, 276–288 (2010)CrossRefGoogle Scholar
  9. 9.
    Farzanfar, R., Frishkopf, S., Migneault, J., Friedman, R.: Telephone-linked care for physical activity: A qualitative evaluation of the use patterns of an information technology program for patients. Journal of Biomedical Informatics 38, 220–228 (2005)CrossRefGoogle Scholar
  10. 10.
    Harper, R., Nicholl, P., McTear, M.F., Wallace, J.G., Black, L.A., Kearney, P.: Automated phone capture of diabetes patients readings with consultant monitoring via the web. In: Proc. ECBS 2008, pp. 219–226 (2008)Google Scholar
  11. 11.
    Bickmore, T.W., Schulman, D., Sidner, C.L.: A reusable framework for health counseling dialogue systems based on a behavioral medicine ontology. Journal of Biomedical Informatics 44(2), 183–197 (2011)CrossRefGoogle Scholar
  12. 12.
    Bickmore, T.W., Schulman, D., Sidner, C.: Automated interventions for multiple health behaviors using conversational agents. Patient Education and Counseling 92(2), 142–148 (2013)CrossRefGoogle Scholar
  13. 13.
    Dalgaard, L., Gronvall, E., Verdezoto, N.: Mediframe: A tablet application to plan, inform, remind and sustain older adults’ medication intake. In: Proc. ICHI 2013, pp. 36–45 (2013)Google Scholar
  14. 14.
    McTear, M.F., Callejas, Z.: Voice Application Development for Android. Packt Publishing Ltd (2013)Google Scholar
  15. 15.
    Callejas, Z., López-Cózar, R.: Influence of contextual information in emotion annotation for spoken dialogue systems. Speech Communication 50(5), 416–433 (2008)CrossRefGoogle Scholar
  16. 16.
    Callejas, Z., Griol, D., López-Cózar, R.: Predicting user mental states in spoken dialogue systems. EURASIP Journal on Advances in Signal Processing 2011(1), 6 (2011)CrossRefGoogle Scholar
  17. 17.
    Acosta, J.C., Ward, N.G.: Achieving rapport with turn-by-turn, user-responsive emotional coloring. Speech Communication 53(9-10), 1137–1148 (2011)CrossRefGoogle Scholar
  18. 18.
    Kang, S.-H., Gratch, J.: Exploring users’ social responses to computer counseling interviewers’ behavior. Computers in Human Behavior 34, 120–130 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zoraida Callejas
    • 1
  • David Griol
    • 2
  • Michael F. McTear
    • 3
  • Ramón López-Cózar
    • 1
  1. 1.Dept. Languages and Computer SystemsUniv. of Granada, CITIC-UGRSpain
  2. 2.Dept. Computer ScienceUniv. Carlos III of MadridSpain
  3. 3.School of Computing and MathematicsUniv. of UlsterUK

Personalised recommendations