Advertisement

Evaluation of a Context-Aware Application for Mobile Robot Control Mediated by Physiological Data: The ToBITas Case Study

  • Borja Gamecho
  • José Guerreiro
  • Ana Priscila Alves
  • André Lourenço
  • Hugo Plácido da Silva
  • Luis Gardeazabal
  • Julio Abascal
  • Ana Fred
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8867)

Abstract

We present the ToBITas mobile Context-Aware application to control a mobile robot using electromyographic and accelerometric signals acquired from the user’s right-hand arm. The signals are acquired by means of an off-the-shelf low-cost device called BITalino and are processed by an Android smartphone. Our work was developed as a case study to validate the quality of the mobile applications created with a rapid-prototyping framework called MobileBIT. We evaluated the application with thirteen participants and the results suggest that participants were able to adapt to the proposed control mode, completing the task in a suitable time.

Keywords

context-awareness mobile computing physiological signals human-computer interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dey, A., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum.-Comput. Interact. 16(2), 97–166 (2001)CrossRefGoogle Scholar
  2. 2.
    Silva, H., Lourenc̨o, A., Fred, A., Martins, R.: BIT: Biosignal igniter toolkit. Computer Methods and Programs in Biomedicine 115(1), 20–32 (2014)CrossRefGoogle Scholar
  3. 3.
    Cânovas, M., Silva, H., Lourenço, A., Canento, F., Fred, A.: MobileBIT: A framework for mobile interaction recording and display. In: Stacey, D., Solé-Casals, J., Fred, A.L.N., Gamboa, H. (eds.) Proc. of the 6th Conference on Health Informatics (HEALTHINF), pp. 366–369. SciTePress (2013)Google Scholar
  4. 4.
    Rosenberg, R.: The biofeedback pointer: EMG control of a two dimensional pointer. In: Digest of Papers of the Second International Symposium on Wearable Computers, Digest of Papers, pp. 162–163 (1998)Google Scholar
  5. 5.
    Guerreiro, T., Jorge, J.: Assessing electromyographic interfaces. JVRB 5 (2008)Google Scholar
  6. 6.
    Costanza, E., Inverso, S.A., Allen, R., Maes, P.: Intimate interfaces in action: Assessing the usability and subtlety of emg-based motionless gestures. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2007, pp. 819–828. ACM Press, New York (2007)Google Scholar
  7. 7.
    Rhee, K., You, K., Shin, H.: Intuitive robot control using surface emg and accelerometer signals. International Journal of Electrical, Electronics, Communication, Energy Science and Engineering 7(10), 89–92 (2013)Google Scholar
  8. 8.
    Brooke, J.: SUS: A quick and dirty usability scale. In: Jordan, P.W., Weerdmeester, B., Thomas, A., Mclelland, I.L. (eds.) Usability Evaluation in Industry. Taylor and Francis, London (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Borja Gamecho
    • 1
  • José Guerreiro
    • 2
  • Ana Priscila Alves
    • 2
  • André Lourenço
    • 2
  • Hugo Plácido da Silva
    • 2
  • Luis Gardeazabal
    • 1
  • Julio Abascal
    • 1
  • Ana Fred
    • 2
  1. 1.Egokituz LaboratoryUniverstity of the Basque CountryDonostiaSpain
  2. 2.PIA GroupInstituto de TelecomunicaçõesLisboaPortugal

Personalised recommendations