Planar Embeddings with Small and Uniform Faces

  • Giordano Da Lozzo
  • Vít Jelínek
  • Jan Kratochvíl
  • Ignaz Rutter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8889)


Motivated by finding planar embeddings that lead to drawings with favorable aesthetics, we study the problems MinMaxFace and UniformFaces of embedding a given biconnected multi-graph such that the largest face is as small as possible and such that all faces have the same size, respectively. We prove a complexity dichotomy for MinMaxFace and show that deciding whether the maximum is at most \(k\) is polynomial-time solvable for \(k \le 4\) and NP-complete for \(k \ge 5\). Further, we give a 6-approximation for minimizing the maximum face in a planar embedding. For UniformFaces, we show that the problem is NP-complete for odd \(k \ge 7\) and even \(k \ge 10\). Moreover, we characterize the biconnected planar multi-graphs admitting 3- and 4-uniform embeddings (in a \(k\)-uniform embedding all faces have size \(k\)) and give an efficient algorithm for testing the existence of a 6-uniform embedding.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angelini, P., Di Battista, G., Patrignani, M.: Finding a minimum-depth embedding of a planar graph in \({O}(n^4)\) time. Algorithmica 60, 890–937 (2011)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bienstock, D., Monma, C.L.: On the complexity of covering vertices by faces in a planar graph. SIAM J. Comput. 17(1), 53–76 (1988)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility constraints. Algorithmica 68, 859–885 (2014)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 184–195. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Da Lozzo, G., Jelínek, V., Kratochvíl, J., Rutter, I.: Planar Embeddings with Small and Uniform Faces. ArXiv e-prints (September 2014)Google Scholar
  6. 6.
    Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM Journal on Computing 27(6), 1764–1811 (1998)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Di Battista, G., Tamassia, R.: On-line graph algorithms with SPQR-trees. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 598–611. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  8. 8.
    Fellows, M.R., Kratochvíl, J., Middendorf, M., Pfeiffer, F.: The complexity of induced minors and related problems. Algorithmica 13, 266–282 (1995)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Gabow, H.N.: An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems. In: Theory of Computing, STOC 1983, pp. 448–456. ACM (1983)Google Scholar
  10. 10.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. on Comput. 31(2), 601–625 (2001)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Gutwenger, C., Mutzel, P.: Graph embedding with minimum depth and maximum external face. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 259–272. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Moore, C., Robson, J.M.: Hard tiling problems with simple tiles. Discrete Comput. Geom. 26(4), 573–590 (2001)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Mutzel, P., Weiskircher, R.: Optimizing over all combinatorial embeddings of a planar graph. In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 361–376. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Woeginger, G.J.: Embeddings of planar graphs that minimize the number of long-face cycles. Oper. Res. Lett., 167–168 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Giordano Da Lozzo
    • 1
  • Vít Jelínek
    • 2
  • Jan Kratochvíl
    • 3
  • Ignaz Rutter
    • 3
    • 4
  1. 1.Department of EngineeringRoma Tre UniversityRomeItaly
  2. 2.Computer Science Institute, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  3. 3.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  4. 4.Faculty of InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations