Rank-Maximal Matchings – Structure and Algorithms

  • Pratik Ghosal
  • Meghana Nasre
  • Prajakta Nimbhorkar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8889)

Abstract

Let \(G = (\mathcal {A}\cup \mathcal {P}, E)\) be a bipartite graph where \(\mathcal {A}\) denotes a set of agents, \(\mathcal {P}\) denotes a set of posts and ranks on the edges denote preferences of the agents over posts. A matching \(M\) in \(G\) is rank-maximal if it matches the maximum number of applicants to their top-rank post, subject to this, the maximum number of applicants to their second rank post and so on.

In this paper, we develop a switching graph characterization of rank-maximal matchings, which is a useful tool that encodes all rank-maximal matchings in an instance. The characterization leads to simple and efficient algorithms for several interesting problems. In particular, we give an efficient algorithm to compute the set of rank-maximal pairs in an instance. We show that the problem of counting the number of rank-maximal matchings is \(\#P\)-Complete and also give an FPRAS for the problem. Finally, we consider the problem of deciding whether a rank-maximal matching is popular among all the rank-maximal matchings in a given instance, and give an efficient algorithm for the problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto optimality in house allocation problems. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 3–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal on Computing 37(4), 1030–1045 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Dagum, P., Luby, M.: Approximating the permanent of graphs with large factors. Theor. Comput. Sci. 102(2), 283–305 (1992)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Ghoshal, P., Nasre, M., Nimbhorkar, P.: Rank maximal matchings - structure and algorithms. CoRR, abs/1409.4977 (2014)Google Scholar
  5. 5.
    Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. Journal of Political Economy 87(2), 293–314 (1979)CrossRefGoogle Scholar
  6. 6.
    Irving, R.W.: Greedy matchings. Technical Report, University of Glasgow, TR-2003-136 (2003)Google Scholar
  7. 7.
    Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.E.: Rank-maximal matchings. ACM Transactions on Algorithms 2(4), 602–610 (2006)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Irving, R.W., Leather, P., Gusfield, D.: An efficient algorithm for the “optimal” stable marriage. Journal of the ACM 34(3), 532–543 (1987)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51(4), 671–697 (2004)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Kavitha, T., Nasre, M.: Note: Optimal popular matchings. Discrete Applied Mathematics 157(14), 3181–3186 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Kavitha, T., Shah, C.D.: Efficient algorithms for weighted rank-maximal matchings and related problems. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 153–162. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    McDermid, E., Irving, R.W.: Popular matchings: structure and algorithms. Journal of Combinatorial Optimization 22(3), 339–358 (2011)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Nasre, M.: Popular Matchings: Structure and Cheating Strategies. In: Proceedings of 30th STACS, pp. 412–423 (2013)Google Scholar
  14. 14.
    Paluch, K.: Capacitated rank-maximal matchings. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 324–335. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Pulleyblank, W.R.: Matchings and Extensions. Handbook of Combinatorics, vol. 1, pp. 179–232. MIT Press, Cambridge (1995)Google Scholar
  16. 16.
    Yuan, Y.: Residence exchange wanted: A stable residence exchange problem. European Journal of Operational Research 90(3), 536–546 (1996)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pratik Ghosal
    • 1
  • Meghana Nasre
    • 2
  • Prajakta Nimbhorkar
    • 3
  1. 1.University of WrocławWrocławPoland
  2. 2.Indian Institute of TechnologyMadrasIndia
  3. 3.Chennai Mathematical InstituteChennaiIndia

Personalised recommendations