ISAAC 2014: Algorithms and Computation pp 401-413

# Minimal Obstructions for Partial Representations of Interval Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8889)

## Abstract

Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation.

In this paper, we characterize the minimal obstructions which make a partial representation non-extendible. This generalizes Lekkerkerker and Boland’s characterization of minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to the first polynomial-time certifying algorithm for partial representation extension of intersection graphs.

## Preview

Unable to display preview. Download preview PDF.

### References

1. 1.
Angelini, P., Battista, G.D., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: SODA 2010, pp. 202–221 (2010)Google Scholar
2. 2.
Balko, M., Klavík, P., Otachi, Y.: Bounded representations of interval and proper interval graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 535–546. Springer, Heidelberg (2013)
3. 3.
Benzer, S.: On the topology of the genetic fine structure. Proc. Nat. Acad. Sci. U.S.A. 45, 1607–1620 (1959)
4. 4.
Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: SODA 2013, pp. 1030–1043 (2013)Google Scholar
5. 5.
Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms. J. Comput. System Sci. 13, 335–379 (1976)
6. 6.
Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graph: Rebuilding is hard. In: WG 2014 (2014)Google Scholar
7. 7.
Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 131–142. Springer, Heidelberg (2013)
8. 8.
Colbourn, C.J., Booth, K.S.: Linear times automorphism algorithms for trees, interval graphs, and planar graphs. SIAM J. Comput. 10(1), 203–225 (1981)
9. 9.
Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)
10. 10.
Hajós, G.: Über eine Art von Graphen. Internat. Math. News 11, 65 (1957)Google Scholar
11. 11.
Jelínek, V., Kratochvíl, J., Rutter, I.: A kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013)
12. 12.
Kendall, D.G.: Incidence matrices, interval graphs and seriation in archaeology. Pac. J. Math 28(3), 565–570 (1969)
13. 13.
Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 671–682. Springer, Heidelberg (2012)
14. 14.
Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial representations of proper and unit interval graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 253–264. Springer, Heidelberg (2014)
15. 15.
Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 444–454. Springer, Heidelberg (2012)
16. 16.
Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of interval graphs. CoRR, abs/1306.2182 (2013)Google Scholar
17. 17.
Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending partial representations of interval graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp. 276–285. Springer, Heidelberg (2011)
18. 18.
Korte, N., Möhring, R.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18(1), 68–81 (1989)
19. 19.
Lekkerkerker, C., Boland, D.: Representation of finite graphs by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)
20. 20.
Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006)
21. 21.
Roberts, F.S.: Discrete Mathematical Models, with Applications to Social, Biological, and Environmental Problems. Prentice-Hall, Englewood Cliffs (1976)
22. 22.
Skrien, D.: Chronological orderings of interval graphs. Discrete Appl. Math. 8(1), 69–83 (1984)