Reconstructing Point Set Order Typesfrom Radial Orderings

  • Oswin Aichholzer
  • Jean Cardinal
  • Vincent KustersEmail author
  • Stefan Langerman
  • Pavel Valtr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8889)


We consider the problem of reconstructing the combinatorial structure of a set of \(n\) points in the plane given partial information on the relative position of the points. This partial information consists of the radial ordering, for each of the \(n\) points, of the \(n-1\) other points around it. We show that this information is sufficient to reconstruct the chirotope, or labeled order type, of the point set, provided its convex hull has size at least four. Otherwise, we show that there can be as many as \(n-1\) distinct chirotopes that are compatible with the partial information, and this bound is tight. Our proofs yield polynomial-time reconstruction algorithms. These results provide additional theoretical insights on previously studied problems related to robot navigation and visibility-based reconstruction.


Polynomial Time Convex Hull Radial System Local Sequence Order Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodman, J.E., Pollack, R.: Multidimensional sorting. SIAM Journal on Computing 12(3), 484–507 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Knuth, D.E. (ed.): Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  3. 3.
    Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented Matroids, 2nd edn. Cambridge University Press (1999)Google Scholar
  4. 4.
    Bokowski, J., King, S., Mock, S., Streinu, I.: The topological representation of oriented matroids. Discrete & Computational Geometry 33(4), 645–668 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of arrangements. J. Comb. Theory, Series A 37(3), 257–293 (1984)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Felsner, S.: On the number of arrangements of pseudolines. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry, pp. 30–37. ACM (1996)Google Scholar
  7. 7.
    Felsner, S., Valtr, P.: Coding and counting arrangements of pseudolines. Discr. & Comp. Geom. 46(3), 405–416 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Pilz, A., Welzl, E.: Order on order-types. In preparationGoogle Scholar
  9. 9.
    Tovar, B., Freda, L., LaValle, S.M.: Using a robot to learn geometric information from permutations of landmarks. Contemporary Mathematics 438, 33–45 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Wismath, S.K.: Point and line segment reconstruction from visibility information. Int. J. Comput. Geometry Appl. 10(2), 189–200 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Disser, Y., Mihalák, M., Widmayer, P.: Reconstructing a simple polygon from its angles. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 13–24. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Chen, D.Z., Wang, H.: An improved algorithm for reconstructing a simple polygon from its visibility angles. Comput. Geom. 45(5–6), 254–257 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Devillers, O., Dujmovic, V., Everett, H., Hornus, S., Whitesides, S., Wismath, S.K.: Maintaining visibility information of planar point sets with a moving viewpoint. Int. J. Comput. Geometry Appl. 17(4), 297–304 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Díaz-Báñez, J.M., Fabila-Monroy, R., Pérez-Lantero, P.: On the number of radial orderings of colored planar point sets. In: Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp. 109–118. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Durocher, S., Mehrabi, S., Mondal, D., Skala, M.: Realizing site permutations. In: CCCG. (2011)Google Scholar
  16. 16.
    Cardinal, J., Kusters, V.: The complexity of simultaneous geometric graph embedding. CoRR abs/1302.7127 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • Jean Cardinal
    • 2
  • Vincent Kusters
    • 3
    Email author
  • Stefan Langerman
    • 2
  • Pavel Valtr
    • 4
  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria
  2. 2.Computer Science DepartmentUniversité libre de Bruxelles (ULB)BrusselsBelgium
  3. 3.Department of Computer ScienceETH ZürichZurichSwitzerland
  4. 4.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations