Planar Matchings for Weighted Straight Skeletons

  • Therese Biedl
  • Stefan Huber
  • Peter Palfrader
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8889)


In this paper, we introduce planar matchings on directed pseudo-line arrangements, which yield a planar set of pseudo-line segments such that only matching-partners are adjacent. By translating the planar matching problem into a corresponding stable roommates problem we show that such matchings always exist.

Using our new framework, we establish, for the first time, a complete, rigorous definition of weighted straight skeletons, which are based on a so-called wavefront propagation process. We present a generalized and unified approach to treat structural changes in the wavefront that focuses on the restoration of weak planarity by finding planar matchings.


Planar matchings Pseudo-line arrangements Stable roommates Weighted straight skeletons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O., Alberts, D., Aurenhammer, F., Gärtner, B.: Straight Skeletons of Simple Polygons. In: Proc. 4th Int’l Symp. of LIESMARS, pp. 114–124 (1995)Google Scholar
  2. 2.
    Aurenhammer, F.: Weighted Skeletons and Fixed-Share Decomposition. Comput. Geom. Theory and Appl. 40(2), 93–101 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Barequet, G., Eppstein, D., Goodrich, M.T., Vaxman, A.: Straight Skeletons of Three-Dimensional Polyhedra. In: Proc. 16th Annu. Europ. Symp. Algorithms, pp. 148–160 (September 2008)Google Scholar
  4. 4.
    Biedl, T., Held, M., Huber, S., Kaaser, D., Palfrader, P.: Weighted Straight Skeletons in the Plane. Comput. Geom. Theory and Appl. 48(2), 120–133 (2015)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Eppstein, D., Erickson, J.: Raising Roofs, Crashing Cycles, and Playing Pool: Applications of a Data Structure for Finding Pairwise Interactions. Discrete Comput. Geom. 22(4), 569–592 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fleiner, T., Irving, R.W., Manlove, D.F.: Efficient algorithms for generalized stable marriage and roommates problems. Theoretical Computer Science 381(13), 162–176 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Haunert, J.-H., Sester, M.: Area Collapse and Road Centerlines Based on Straight Skeletons. GeoInformatica 12, 169–191 (2008)CrossRefGoogle Scholar
  8. 8.
    Huber, S.: Computing Straight Skeletons and Motorcycle Graphs: Theory and Practice. Shaker Verlag (April 2012). ISBN: 978-3-8440-0938-5Google Scholar
  9. 9.
    Kelly, T., Wonka, P.: Interactive Architectural Modeling with Procedural Extrusions. ACM Trans. Graph. 30(2), 14:1–14:15 (2011)CrossRefGoogle Scholar
  10. 10.
    Laycock, R., Day, A.: Automatically Generating Large Urban Environments Based on the Footprint Data of Buildings. In: Proc. 8th Symp. Solid Modeling Applications, pp. 346–351 (June 2003)Google Scholar
  11. 11.
    Tan, J.J.: A Necessary and Sufficient Condition for the Existence of a Complete Stable Matching. Journal of Algorithms 12(1), 154–178 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Tan, J.J., Hsueh, Y.-C.: A generalization of the stable matching problem. Discrete Applied Mathematics 59(1), 87–102 (1995)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooONCanada
  2. 2.Institute of Science and Technology AustriaKlosterneuburgAustria
  3. 3.FB ComputerwissenschaftenUniversität SalzburgSalzburgAustria

Personalised recommendations